Copied to
clipboard

G = C2×C164C4order 128 = 27

Direct product of C2 and C164C4

direct product, p-group, metabelian, nilpotent (class 4), monomial

Aliases: C2×C164C4, C23.60D8, C22.12SD32, (C2×C16)⋊15C4, C1611(C2×C4), (C2×C4).80D8, C8.24(C4⋊C4), (C2×C8).46Q8, C8.15(C2×Q8), C4.6(C2×Q16), (C2×C8).249D4, (C2×C4).40Q16, C2.3(C2×SD32), C8.52(C22×C4), C4.17(C2.D8), C22.58(C2×D8), (C22×C16).15C2, (C2×C16).97C22, (C2×C8).499C23, (C22×C4).587D4, C2.D8.147C22, C22.23(C2.D8), (C22×C8).529C22, C4.51(C2×C4⋊C4), C2.12(C2×C2.D8), (C2×C8).223(C2×C4), (C2×C4).763(C2×D4), (C2×C2.D8).24C2, (C2×C4).143(C4⋊C4), SmallGroup(128,889)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — C2×C164C4
C1C2C4C2×C4C2×C8C22×C8C22×C16 — C2×C164C4
C1C2C4C8 — C2×C164C4
C1C23C22×C4C22×C8 — C2×C164C4
C1C2C2C2C2C4C4C2×C8 — C2×C164C4

Generators and relations for C2×C164C4
 G = < a,b,c | a2=b16=c4=1, ab=ba, ac=ca, cbc-1=b7 >

Subgroups: 172 in 84 conjugacy classes, 60 normal (16 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C16, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2.D8, C2.D8, C2×C16, C2×C4⋊C4, C22×C8, C164C4, C2×C2.D8, C22×C16, C2×C164C4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, D8, Q16, C22×C4, C2×D4, C2×Q8, C2.D8, SD32, C2×C4⋊C4, C2×D8, C2×Q16, C164C4, C2×C2.D8, C2×SD32, C2×C164C4

Smallest permutation representation of C2×C164C4
Regular action on 128 points
Generators in S128
(1 86)(2 87)(3 88)(4 89)(5 90)(6 91)(7 92)(8 93)(9 94)(10 95)(11 96)(12 81)(13 82)(14 83)(15 84)(16 85)(17 114)(18 115)(19 116)(20 117)(21 118)(22 119)(23 120)(24 121)(25 122)(26 123)(27 124)(28 125)(29 126)(30 127)(31 128)(32 113)(33 80)(34 65)(35 66)(36 67)(37 68)(38 69)(39 70)(40 71)(41 72)(42 73)(43 74)(44 75)(45 76)(46 77)(47 78)(48 79)(49 99)(50 100)(51 101)(52 102)(53 103)(54 104)(55 105)(56 106)(57 107)(58 108)(59 109)(60 110)(61 111)(62 112)(63 97)(64 98)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 112 26 75)(2 103 27 66)(3 110 28 73)(4 101 29 80)(5 108 30 71)(6 99 31 78)(7 106 32 69)(8 97 17 76)(9 104 18 67)(10 111 19 74)(11 102 20 65)(12 109 21 72)(13 100 22 79)(14 107 23 70)(15 98 24 77)(16 105 25 68)(33 89 51 126)(34 96 52 117)(35 87 53 124)(36 94 54 115)(37 85 55 122)(38 92 56 113)(39 83 57 120)(40 90 58 127)(41 81 59 118)(42 88 60 125)(43 95 61 116)(44 86 62 123)(45 93 63 114)(46 84 64 121)(47 91 49 128)(48 82 50 119)

G:=sub<Sym(128)| (1,86)(2,87)(3,88)(4,89)(5,90)(6,91)(7,92)(8,93)(9,94)(10,95)(11,96)(12,81)(13,82)(14,83)(15,84)(16,85)(17,114)(18,115)(19,116)(20,117)(21,118)(22,119)(23,120)(24,121)(25,122)(26,123)(27,124)(28,125)(29,126)(30,127)(31,128)(32,113)(33,80)(34,65)(35,66)(36,67)(37,68)(38,69)(39,70)(40,71)(41,72)(42,73)(43,74)(44,75)(45,76)(46,77)(47,78)(48,79)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,105)(56,106)(57,107)(58,108)(59,109)(60,110)(61,111)(62,112)(63,97)(64,98), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,112,26,75)(2,103,27,66)(3,110,28,73)(4,101,29,80)(5,108,30,71)(6,99,31,78)(7,106,32,69)(8,97,17,76)(9,104,18,67)(10,111,19,74)(11,102,20,65)(12,109,21,72)(13,100,22,79)(14,107,23,70)(15,98,24,77)(16,105,25,68)(33,89,51,126)(34,96,52,117)(35,87,53,124)(36,94,54,115)(37,85,55,122)(38,92,56,113)(39,83,57,120)(40,90,58,127)(41,81,59,118)(42,88,60,125)(43,95,61,116)(44,86,62,123)(45,93,63,114)(46,84,64,121)(47,91,49,128)(48,82,50,119)>;

G:=Group( (1,86)(2,87)(3,88)(4,89)(5,90)(6,91)(7,92)(8,93)(9,94)(10,95)(11,96)(12,81)(13,82)(14,83)(15,84)(16,85)(17,114)(18,115)(19,116)(20,117)(21,118)(22,119)(23,120)(24,121)(25,122)(26,123)(27,124)(28,125)(29,126)(30,127)(31,128)(32,113)(33,80)(34,65)(35,66)(36,67)(37,68)(38,69)(39,70)(40,71)(41,72)(42,73)(43,74)(44,75)(45,76)(46,77)(47,78)(48,79)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,105)(56,106)(57,107)(58,108)(59,109)(60,110)(61,111)(62,112)(63,97)(64,98), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,112,26,75)(2,103,27,66)(3,110,28,73)(4,101,29,80)(5,108,30,71)(6,99,31,78)(7,106,32,69)(8,97,17,76)(9,104,18,67)(10,111,19,74)(11,102,20,65)(12,109,21,72)(13,100,22,79)(14,107,23,70)(15,98,24,77)(16,105,25,68)(33,89,51,126)(34,96,52,117)(35,87,53,124)(36,94,54,115)(37,85,55,122)(38,92,56,113)(39,83,57,120)(40,90,58,127)(41,81,59,118)(42,88,60,125)(43,95,61,116)(44,86,62,123)(45,93,63,114)(46,84,64,121)(47,91,49,128)(48,82,50,119) );

G=PermutationGroup([[(1,86),(2,87),(3,88),(4,89),(5,90),(6,91),(7,92),(8,93),(9,94),(10,95),(11,96),(12,81),(13,82),(14,83),(15,84),(16,85),(17,114),(18,115),(19,116),(20,117),(21,118),(22,119),(23,120),(24,121),(25,122),(26,123),(27,124),(28,125),(29,126),(30,127),(31,128),(32,113),(33,80),(34,65),(35,66),(36,67),(37,68),(38,69),(39,70),(40,71),(41,72),(42,73),(43,74),(44,75),(45,76),(46,77),(47,78),(48,79),(49,99),(50,100),(51,101),(52,102),(53,103),(54,104),(55,105),(56,106),(57,107),(58,108),(59,109),(60,110),(61,111),(62,112),(63,97),(64,98)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,112,26,75),(2,103,27,66),(3,110,28,73),(4,101,29,80),(5,108,30,71),(6,99,31,78),(7,106,32,69),(8,97,17,76),(9,104,18,67),(10,111,19,74),(11,102,20,65),(12,109,21,72),(13,100,22,79),(14,107,23,70),(15,98,24,77),(16,105,25,68),(33,89,51,126),(34,96,52,117),(35,87,53,124),(36,94,54,115),(37,85,55,122),(38,92,56,113),(39,83,57,120),(40,90,58,127),(41,81,59,118),(42,88,60,125),(43,95,61,116),(44,86,62,123),(45,93,63,114),(46,84,64,121),(47,91,49,128),(48,82,50,119)]])

44 conjugacy classes

class 1 2A···2G4A4B4C4D4E···4L8A···8H16A···16P
order12···244444···48···816···16
size11···122228···82···22···2

44 irreducible representations

dim111112222222
type+++++-++-+
imageC1C2C2C2C4D4Q8D4D8Q16D8SD32
kernelC2×C164C4C164C4C2×C2.D8C22×C16C2×C16C2×C8C2×C8C22×C4C2×C4C2×C4C23C22
# reps1421812124216

Matrix representation of C2×C164C4 in GL4(𝔽17) generated by

16000
01600
0010
0001
,
1000
01600
00140
0006
,
4000
01600
0001
00160
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,16,0,0,0,0,14,0,0,0,0,6],[4,0,0,0,0,16,0,0,0,0,0,16,0,0,1,0] >;

C2×C164C4 in GAP, Magma, Sage, TeX

C_2\times C_{16}\rtimes_4C_4
% in TeX

G:=Group("C2xC16:4C4");
// GroupNames label

G:=SmallGroup(128,889);
// by ID

G=gap.SmallGroup(128,889);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,736,1123,360,4037,124]);
// Polycyclic

G:=Group<a,b,c|a^2=b^16=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^7>;
// generators/relations

׿
×
𝔽