Extensions 1→N→G→Q→1 with N=C2×C6 and Q=D6

Direct product G=N×Q with N=C2×C6 and Q=D6
dρLabelID
S3×C22×C648S3xC2^2xC6144,195

Semidirect products G=N:Q with N=C2×C6 and Q=D6
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊D6 = S3×S4φ: D6/C1D6 ⊆ Aut C2×C6126+(C2xC6):D6144,183
(C2×C6)⋊2D6 = C6×S4φ: D6/C2S3 ⊆ Aut C2×C6183(C2xC6):2D6144,188
(C2×C6)⋊3D6 = C2×C3⋊S4φ: D6/C2S3 ⊆ Aut C2×C6186+(C2xC6):3D6144,189
(C2×C6)⋊4D6 = S3×C3⋊D4φ: D6/C3C22 ⊆ Aut C2×C6244(C2xC6):4D6144,153
(C2×C6)⋊5D6 = Dic3⋊D6φ: D6/C3C22 ⊆ Aut C2×C6124+(C2xC6):5D6144,154
(C2×C6)⋊6D6 = D4×C3⋊S3φ: D6/C3C22 ⊆ Aut C2×C636(C2xC6):6D6144,172
(C2×C6)⋊7D6 = C3×S3×D4φ: D6/S3C2 ⊆ Aut C2×C6244(C2xC6):7D6144,162
(C2×C6)⋊8D6 = C22×S32φ: D6/S3C2 ⊆ Aut C2×C624(C2xC6):8D6144,192
(C2×C6)⋊9D6 = C6×C3⋊D4φ: D6/C6C2 ⊆ Aut C2×C624(C2xC6):9D6144,167
(C2×C6)⋊10D6 = C2×C327D4φ: D6/C6C2 ⊆ Aut C2×C672(C2xC6):10D6144,177
(C2×C6)⋊11D6 = C23×C3⋊S3φ: D6/C6C2 ⊆ Aut C2×C672(C2xC6):11D6144,196

Non-split extensions G=N.Q with N=C2×C6 and Q=D6
extensionφ:Q→Aut NdρLabelID
(C2×C6).D6 = C2×C3.S4φ: D6/C2S3 ⊆ Aut C2×C6186+(C2xC6).D6144,109
(C2×C6).2D6 = D4×D9φ: D6/C3C22 ⊆ Aut C2×C6364+(C2xC6).2D6144,41
(C2×C6).3D6 = D42D9φ: D6/C3C22 ⊆ Aut C2×C6724-(C2xC6).3D6144,42
(C2×C6).4D6 = D6.3D6φ: D6/C3C22 ⊆ Aut C2×C6244(C2xC6).4D6144,147
(C2×C6).5D6 = D6.4D6φ: D6/C3C22 ⊆ Aut C2×C6244-(C2xC6).5D6144,148
(C2×C6).6D6 = C12.D6φ: D6/C3C22 ⊆ Aut C2×C672(C2xC6).6D6144,173
(C2×C6).7D6 = C3×D42S3φ: D6/S3C2 ⊆ Aut C2×C6244(C2xC6).7D6144,163
(C2×C6).8D6 = Dic32φ: D6/S3C2 ⊆ Aut C2×C648(C2xC6).8D6144,63
(C2×C6).9D6 = D6⋊Dic3φ: D6/S3C2 ⊆ Aut C2×C648(C2xC6).9D6144,64
(C2×C6).10D6 = C6.D12φ: D6/S3C2 ⊆ Aut C2×C624(C2xC6).10D6144,65
(C2×C6).11D6 = Dic3⋊Dic3φ: D6/S3C2 ⊆ Aut C2×C648(C2xC6).11D6144,66
(C2×C6).12D6 = C62.C22φ: D6/S3C2 ⊆ Aut C2×C648(C2xC6).12D6144,67
(C2×C6).13D6 = C2×S3×Dic3φ: D6/S3C2 ⊆ Aut C2×C648(C2xC6).13D6144,146
(C2×C6).14D6 = C2×C6.D6φ: D6/S3C2 ⊆ Aut C2×C624(C2xC6).14D6144,149
(C2×C6).15D6 = C2×D6⋊S3φ: D6/S3C2 ⊆ Aut C2×C648(C2xC6).15D6144,150
(C2×C6).16D6 = C2×C3⋊D12φ: D6/S3C2 ⊆ Aut C2×C624(C2xC6).16D6144,151
(C2×C6).17D6 = C2×C322Q8φ: D6/S3C2 ⊆ Aut C2×C648(C2xC6).17D6144,152
(C2×C6).18D6 = C3×C4○D12φ: D6/C6C2 ⊆ Aut C2×C6242(C2xC6).18D6144,161
(C2×C6).19D6 = C4×Dic9φ: D6/C6C2 ⊆ Aut C2×C6144(C2xC6).19D6144,11
(C2×C6).20D6 = Dic9⋊C4φ: D6/C6C2 ⊆ Aut C2×C6144(C2xC6).20D6144,12
(C2×C6).21D6 = C4⋊Dic9φ: D6/C6C2 ⊆ Aut C2×C6144(C2xC6).21D6144,13
(C2×C6).22D6 = D18⋊C4φ: D6/C6C2 ⊆ Aut C2×C672(C2xC6).22D6144,14
(C2×C6).23D6 = C18.D4φ: D6/C6C2 ⊆ Aut C2×C672(C2xC6).23D6144,19
(C2×C6).24D6 = C2×Dic18φ: D6/C6C2 ⊆ Aut C2×C6144(C2xC6).24D6144,37
(C2×C6).25D6 = C2×C4×D9φ: D6/C6C2 ⊆ Aut C2×C672(C2xC6).25D6144,38
(C2×C6).26D6 = C2×D36φ: D6/C6C2 ⊆ Aut C2×C672(C2xC6).26D6144,39
(C2×C6).27D6 = D365C2φ: D6/C6C2 ⊆ Aut C2×C6722(C2xC6).27D6144,40
(C2×C6).28D6 = C22×Dic9φ: D6/C6C2 ⊆ Aut C2×C6144(C2xC6).28D6144,45
(C2×C6).29D6 = C2×C9⋊D4φ: D6/C6C2 ⊆ Aut C2×C672(C2xC6).29D6144,46
(C2×C6).30D6 = C4×C3⋊Dic3φ: D6/C6C2 ⊆ Aut C2×C6144(C2xC6).30D6144,92
(C2×C6).31D6 = C6.Dic6φ: D6/C6C2 ⊆ Aut C2×C6144(C2xC6).31D6144,93
(C2×C6).32D6 = C12⋊Dic3φ: D6/C6C2 ⊆ Aut C2×C6144(C2xC6).32D6144,94
(C2×C6).33D6 = C6.11D12φ: D6/C6C2 ⊆ Aut C2×C672(C2xC6).33D6144,95
(C2×C6).34D6 = C625C4φ: D6/C6C2 ⊆ Aut C2×C672(C2xC6).34D6144,100
(C2×C6).35D6 = C23×D9φ: D6/C6C2 ⊆ Aut C2×C672(C2xC6).35D6144,112
(C2×C6).36D6 = C2×C324Q8φ: D6/C6C2 ⊆ Aut C2×C6144(C2xC6).36D6144,168
(C2×C6).37D6 = C2×C4×C3⋊S3φ: D6/C6C2 ⊆ Aut C2×C672(C2xC6).37D6144,169
(C2×C6).38D6 = C2×C12⋊S3φ: D6/C6C2 ⊆ Aut C2×C672(C2xC6).38D6144,170
(C2×C6).39D6 = C12.59D6φ: D6/C6C2 ⊆ Aut C2×C672(C2xC6).39D6144,171
(C2×C6).40D6 = C22×C3⋊Dic3φ: D6/C6C2 ⊆ Aut C2×C6144(C2xC6).40D6144,176
(C2×C6).41D6 = Dic3×C12central extension (φ=1)48(C2xC6).41D6144,76
(C2×C6).42D6 = C3×Dic3⋊C4central extension (φ=1)48(C2xC6).42D6144,77
(C2×C6).43D6 = C3×C4⋊Dic3central extension (φ=1)48(C2xC6).43D6144,78
(C2×C6).44D6 = C3×D6⋊C4central extension (φ=1)48(C2xC6).44D6144,79
(C2×C6).45D6 = C3×C6.D4central extension (φ=1)24(C2xC6).45D6144,84
(C2×C6).46D6 = C6×Dic6central extension (φ=1)48(C2xC6).46D6144,158
(C2×C6).47D6 = S3×C2×C12central extension (φ=1)48(C2xC6).47D6144,159
(C2×C6).48D6 = C6×D12central extension (φ=1)48(C2xC6).48D6144,160
(C2×C6).49D6 = Dic3×C2×C6central extension (φ=1)48(C2xC6).49D6144,166

׿
×
𝔽