extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6)⋊D6 = S3×S4 | φ: D6/C1 → D6 ⊆ Aut C2×C6 | 12 | 6+ | (C2xC6):D6 | 144,183 |
(C2×C6)⋊2D6 = C6×S4 | φ: D6/C2 → S3 ⊆ Aut C2×C6 | 18 | 3 | (C2xC6):2D6 | 144,188 |
(C2×C6)⋊3D6 = C2×C3⋊S4 | φ: D6/C2 → S3 ⊆ Aut C2×C6 | 18 | 6+ | (C2xC6):3D6 | 144,189 |
(C2×C6)⋊4D6 = S3×C3⋊D4 | φ: D6/C3 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6):4D6 | 144,153 |
(C2×C6)⋊5D6 = Dic3⋊D6 | φ: D6/C3 → C22 ⊆ Aut C2×C6 | 12 | 4+ | (C2xC6):5D6 | 144,154 |
(C2×C6)⋊6D6 = D4×C3⋊S3 | φ: D6/C3 → C22 ⊆ Aut C2×C6 | 36 | | (C2xC6):6D6 | 144,172 |
(C2×C6)⋊7D6 = C3×S3×D4 | φ: D6/S3 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6):7D6 | 144,162 |
(C2×C6)⋊8D6 = C22×S32 | φ: D6/S3 → C2 ⊆ Aut C2×C6 | 24 | | (C2xC6):8D6 | 144,192 |
(C2×C6)⋊9D6 = C6×C3⋊D4 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 24 | | (C2xC6):9D6 | 144,167 |
(C2×C6)⋊10D6 = C2×C32⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6):10D6 | 144,177 |
(C2×C6)⋊11D6 = C23×C3⋊S3 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6):11D6 | 144,196 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).D6 = C2×C3.S4 | φ: D6/C2 → S3 ⊆ Aut C2×C6 | 18 | 6+ | (C2xC6).D6 | 144,109 |
(C2×C6).2D6 = D4×D9 | φ: D6/C3 → C22 ⊆ Aut C2×C6 | 36 | 4+ | (C2xC6).2D6 | 144,41 |
(C2×C6).3D6 = D4⋊2D9 | φ: D6/C3 → C22 ⊆ Aut C2×C6 | 72 | 4- | (C2xC6).3D6 | 144,42 |
(C2×C6).4D6 = D6.3D6 | φ: D6/C3 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).4D6 | 144,147 |
(C2×C6).5D6 = D6.4D6 | φ: D6/C3 → C22 ⊆ Aut C2×C6 | 24 | 4- | (C2xC6).5D6 | 144,148 |
(C2×C6).6D6 = C12.D6 | φ: D6/C3 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).6D6 | 144,173 |
(C2×C6).7D6 = C3×D4⋊2S3 | φ: D6/S3 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).7D6 | 144,163 |
(C2×C6).8D6 = Dic32 | φ: D6/S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).8D6 | 144,63 |
(C2×C6).9D6 = D6⋊Dic3 | φ: D6/S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).9D6 | 144,64 |
(C2×C6).10D6 = C6.D12 | φ: D6/S3 → C2 ⊆ Aut C2×C6 | 24 | | (C2xC6).10D6 | 144,65 |
(C2×C6).11D6 = Dic3⋊Dic3 | φ: D6/S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).11D6 | 144,66 |
(C2×C6).12D6 = C62.C22 | φ: D6/S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).12D6 | 144,67 |
(C2×C6).13D6 = C2×S3×Dic3 | φ: D6/S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).13D6 | 144,146 |
(C2×C6).14D6 = C2×C6.D6 | φ: D6/S3 → C2 ⊆ Aut C2×C6 | 24 | | (C2xC6).14D6 | 144,149 |
(C2×C6).15D6 = C2×D6⋊S3 | φ: D6/S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).15D6 | 144,150 |
(C2×C6).16D6 = C2×C3⋊D12 | φ: D6/S3 → C2 ⊆ Aut C2×C6 | 24 | | (C2xC6).16D6 | 144,151 |
(C2×C6).17D6 = C2×C32⋊2Q8 | φ: D6/S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).17D6 | 144,152 |
(C2×C6).18D6 = C3×C4○D12 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 24 | 2 | (C2xC6).18D6 | 144,161 |
(C2×C6).19D6 = C4×Dic9 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).19D6 | 144,11 |
(C2×C6).20D6 = Dic9⋊C4 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).20D6 | 144,12 |
(C2×C6).21D6 = C4⋊Dic9 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).21D6 | 144,13 |
(C2×C6).22D6 = D18⋊C4 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).22D6 | 144,14 |
(C2×C6).23D6 = C18.D4 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).23D6 | 144,19 |
(C2×C6).24D6 = C2×Dic18 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).24D6 | 144,37 |
(C2×C6).25D6 = C2×C4×D9 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).25D6 | 144,38 |
(C2×C6).26D6 = C2×D36 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).26D6 | 144,39 |
(C2×C6).27D6 = D36⋊5C2 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 72 | 2 | (C2xC6).27D6 | 144,40 |
(C2×C6).28D6 = C22×Dic9 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).28D6 | 144,45 |
(C2×C6).29D6 = C2×C9⋊D4 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).29D6 | 144,46 |
(C2×C6).30D6 = C4×C3⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).30D6 | 144,92 |
(C2×C6).31D6 = C6.Dic6 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).31D6 | 144,93 |
(C2×C6).32D6 = C12⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).32D6 | 144,94 |
(C2×C6).33D6 = C6.11D12 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).33D6 | 144,95 |
(C2×C6).34D6 = C62⋊5C4 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).34D6 | 144,100 |
(C2×C6).35D6 = C23×D9 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).35D6 | 144,112 |
(C2×C6).36D6 = C2×C32⋊4Q8 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).36D6 | 144,168 |
(C2×C6).37D6 = C2×C4×C3⋊S3 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).37D6 | 144,169 |
(C2×C6).38D6 = C2×C12⋊S3 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).38D6 | 144,170 |
(C2×C6).39D6 = C12.59D6 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).39D6 | 144,171 |
(C2×C6).40D6 = C22×C3⋊Dic3 | φ: D6/C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).40D6 | 144,176 |
(C2×C6).41D6 = Dic3×C12 | central extension (φ=1) | 48 | | (C2xC6).41D6 | 144,76 |
(C2×C6).42D6 = C3×Dic3⋊C4 | central extension (φ=1) | 48 | | (C2xC6).42D6 | 144,77 |
(C2×C6).43D6 = C3×C4⋊Dic3 | central extension (φ=1) | 48 | | (C2xC6).43D6 | 144,78 |
(C2×C6).44D6 = C3×D6⋊C4 | central extension (φ=1) | 48 | | (C2xC6).44D6 | 144,79 |
(C2×C6).45D6 = C3×C6.D4 | central extension (φ=1) | 24 | | (C2xC6).45D6 | 144,84 |
(C2×C6).46D6 = C6×Dic6 | central extension (φ=1) | 48 | | (C2xC6).46D6 | 144,158 |
(C2×C6).47D6 = S3×C2×C12 | central extension (φ=1) | 48 | | (C2xC6).47D6 | 144,159 |
(C2×C6).48D6 = C6×D12 | central extension (φ=1) | 48 | | (C2xC6).48D6 | 144,160 |
(C2×C6).49D6 = Dic3×C2×C6 | central extension (φ=1) | 48 | | (C2xC6).49D6 | 144,166 |