direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C3×D27, C27⋊3C6, C32.2D9, (C3×C27)⋊2C2, C9.2(C3×S3), (C3×C9).5S3, C3.2(C3×D9), SmallGroup(162,7)
Series: Derived ►Chief ►Lower central ►Upper central
C27 — C3×D27 |
Generators and relations for C3×D27
G = < a,b,c | a3=b27=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 19 10)(2 20 11)(3 21 12)(4 22 13)(5 23 14)(6 24 15)(7 25 16)(8 26 17)(9 27 18)(28 37 46)(29 38 47)(30 39 48)(31 40 49)(32 41 50)(33 42 51)(34 43 52)(35 44 53)(36 45 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
(1 51)(2 50)(3 49)(4 48)(5 47)(6 46)(7 45)(8 44)(9 43)(10 42)(11 41)(12 40)(13 39)(14 38)(15 37)(16 36)(17 35)(18 34)(19 33)(20 32)(21 31)(22 30)(23 29)(24 28)(25 54)(26 53)(27 52)
G:=sub<Sym(54)| (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,51)(2,50)(3,49)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28)(25,54)(26,53)(27,52)>;
G:=Group( (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,51)(2,50)(3,49)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28)(25,54)(26,53)(27,52) );
G=PermutationGroup([[(1,19,10),(2,20,11),(3,21,12),(4,22,13),(5,23,14),(6,24,15),(7,25,16),(8,26,17),(9,27,18),(28,37,46),(29,38,47),(30,39,48),(31,40,49),(32,41,50),(33,42,51),(34,43,52),(35,44,53),(36,45,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)], [(1,51),(2,50),(3,49),(4,48),(5,47),(6,46),(7,45),(8,44),(9,43),(10,42),(11,41),(12,40),(13,39),(14,38),(15,37),(16,36),(17,35),(18,34),(19,33),(20,32),(21,31),(22,30),(23,29),(24,28),(25,54),(26,53),(27,52)]])
C3×D27 is a maximal subgroup of
C27⋊3C18 C81⋊C6 C32⋊2D27 He3.3D9 He3.4D9 He3.5D9
C3×D27 is a maximal quotient of C32⋊D27 C81⋊C6
45 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 6A | 6B | 9A | ··· | 9I | 27A | ··· | 27AA |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 9 | ··· | 9 | 27 | ··· | 27 |
size | 1 | 27 | 1 | 1 | 2 | 2 | 2 | 27 | 27 | 2 | ··· | 2 | 2 | ··· | 2 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C3 | C6 | S3 | C3×S3 | D9 | D27 | C3×D9 | C3×D27 |
kernel | C3×D27 | C3×C27 | D27 | C27 | C3×C9 | C9 | C32 | C3 | C3 | C1 |
# reps | 1 | 1 | 2 | 2 | 1 | 2 | 3 | 9 | 6 | 18 |
Matrix representation of C3×D27 ►in GL2(𝔽109) generated by
63 | 0 |
0 | 63 |
22 | 0 |
0 | 5 |
0 | 1 |
1 | 0 |
G:=sub<GL(2,GF(109))| [63,0,0,63],[22,0,0,5],[0,1,1,0] >;
C3×D27 in GAP, Magma, Sage, TeX
C_3\times D_{27}
% in TeX
G:=Group("C3xD27");
// GroupNames label
G:=SmallGroup(162,7);
// by ID
G=gap.SmallGroup(162,7);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-3,452,237,1803,138,2704]);
// Polycyclic
G:=Group<a,b,c|a^3=b^27=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export