Extensions 1→N→G→Q→1 with N=C4 and Q=C2×Dic5

Direct product G=N×Q with N=C4 and Q=C2×Dic5
dρLabelID
C2×C4×Dic5160C2xC4xDic5160,143

Semidirect products G=N:Q with N=C4 and Q=C2×Dic5
extensionφ:Q→Aut NdρLabelID
C41(C2×Dic5) = D4×Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C480C4:1(C2xDic5)160,155
C42(C2×Dic5) = C2×C4⋊Dic5φ: C2×Dic5/C2×C10C2 ⊆ Aut C4160C4:2(C2xDic5)160,146

Non-split extensions G=N.Q with N=C4 and Q=C2×Dic5
extensionφ:Q→Aut NdρLabelID
C4.1(C2×Dic5) = D4⋊Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C480C4.1(C2xDic5)160,39
C4.2(C2×Dic5) = Q8⋊Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C4160C4.2(C2xDic5)160,42
C4.3(C2×Dic5) = D42Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C4404C4.3(C2xDic5)160,44
C4.4(C2×Dic5) = Q8×Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C4160C4.4(C2xDic5)160,166
C4.5(C2×Dic5) = D4.Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C4804C4.5(C2xDic5)160,169
C4.6(C2×Dic5) = C406C4φ: C2×Dic5/C2×C10C2 ⊆ Aut C4160C4.6(C2xDic5)160,24
C4.7(C2×Dic5) = C405C4φ: C2×Dic5/C2×C10C2 ⊆ Aut C4160C4.7(C2xDic5)160,25
C4.8(C2×Dic5) = C40.6C4φ: C2×Dic5/C2×C10C2 ⊆ Aut C4802C4.8(C2xDic5)160,26
C4.9(C2×Dic5) = C2×C4.Dic5φ: C2×Dic5/C2×C10C2 ⊆ Aut C480C4.9(C2xDic5)160,142
C4.10(C2×Dic5) = C2×C52C16central extension (φ=1)160C4.10(C2xDic5)160,18
C4.11(C2×Dic5) = C20.4C8central extension (φ=1)802C4.11(C2xDic5)160,19
C4.12(C2×Dic5) = C8×Dic5central extension (φ=1)160C4.12(C2xDic5)160,20
C4.13(C2×Dic5) = C408C4central extension (φ=1)160C4.13(C2xDic5)160,22
C4.14(C2×Dic5) = C22×C52C8central extension (φ=1)160C4.14(C2xDic5)160,141
C4.15(C2×Dic5) = C23.21D10central extension (φ=1)80C4.15(C2xDic5)160,147

׿
×
𝔽