metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C2×D4).2D6, (C2×C12).2D4, (C2×C4).2D12, C23⋊C4.1S3, C23.7(C4×S3), (C22×C6).9D4, C6.D4⋊2C4, C6.8(C23⋊C4), (C6×D4).2C22, C22.9(D6⋊C4), C12.D4.1C2, (C22×Dic3)⋊1C4, C23.2(C3⋊D4), C3⋊1(C23.D4), C23.23D6.1C2, C2.9(C23.6D6), (C3×C23⋊C4).1C2, (C22×C6).2(C2×C4), (C2×C6).2(C22⋊C4), SmallGroup(192,31)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×D4 — C23⋊C4 |
Generators and relations for (C2×D4).D6
G = < a,b,c,d,e | a2=b4=c2=1, d6=ab2c, e2=ba=dbd-1=ab, ece-1=ac=ca, dad-1=eae-1=ab2, cbc=ebe-1=b-1, dcd-1=b2c, ede-1=bcd5 >
Subgroups: 224 in 68 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C2×C6, C2×C6, C22⋊C4, C4⋊C4, M4(2), C22×C4, C2×D4, C3⋊C8, C2×Dic3, C2×C12, C2×C12, C3×D4, C22×C6, C23⋊C4, C4.D4, C22.D4, C4.Dic3, Dic3⋊C4, C6.D4, C6.D4, C3×C22⋊C4, C22×Dic3, C6×D4, C23.D4, C12.D4, C3×C23⋊C4, C23.23D6, (C2×D4).D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, C4×S3, D12, C3⋊D4, C23⋊C4, D6⋊C4, C23.D4, C23.6D6, (C2×D4).D6
Character table of (C2×D4).D6
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 12A | 12B | 12C | 12D | 12E | |
size | 1 | 1 | 2 | 4 | 4 | 2 | 4 | 8 | 8 | 12 | 12 | 24 | 2 | 4 | 4 | 4 | 8 | 24 | 24 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -i | i | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -i | i | i | i | -1 | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -i | i | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | i | i | -1 | -i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | i | -i | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | -i | -1 | i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | i | -i | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | -i | -1 | i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 2 | -2 | -2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | 1 | 0 | 0 | -√3 | √3 | -1 | √3 | -√3 | orthogonal lifted from D12 |
ρ14 | 2 | 2 | 2 | -2 | -2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | 1 | 0 | 0 | √3 | -√3 | -1 | -√3 | √3 | orthogonal lifted from D12 |
ρ15 | 2 | 2 | 2 | -2 | 2 | -1 | -2 | 2i | -2i | 0 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | 0 | 0 | i | i | 1 | -i | -i | complex lifted from C4×S3 |
ρ16 | 2 | 2 | 2 | -2 | 2 | -1 | -2 | -2i | 2i | 0 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | 0 | 0 | -i | -i | 1 | i | i | complex lifted from C4×S3 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 0 | 0 | √-3 | -√-3 | 1 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 0 | 0 | -√-3 | √-3 | 1 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ19 | 4 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ20 | 4 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2√-3 | 2√-3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.6D6 |
ρ21 | 4 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2√-3 | -2√-3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.6D6 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -2i | 2i | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 2i | -2i | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
ρ24 | 8 | -8 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(2 29)(4 31)(6 33)(8 35)(10 25)(12 27)(14 38)(16 40)(18 42)(20 44)(22 46)(24 48)
(1 47 28 23)(2 48 29 24)(3 13 30 37)(4 14 31 38)(5 39 32 15)(6 40 33 16)(7 17 34 41)(8 18 35 42)(9 43 36 19)(10 44 25 20)(11 21 26 45)(12 22 27 46)
(1 34)(2 8)(3 36)(4 10)(5 26)(6 12)(7 28)(9 30)(11 32)(13 43)(14 20)(15 45)(16 22)(17 47)(18 24)(19 37)(21 39)(23 41)(25 31)(27 33)(29 35)(38 44)(40 46)(42 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 12 47 46 28 27 23 22)(2 45 24 11 29 21 48 26)(3 25 13 44 30 10 37 20)(4 43 38 36 31 19 14 9)(5 8 39 42 32 35 15 18)(6 41 16 7 33 17 40 34)
G:=sub<Sym(48)| (2,29)(4,31)(6,33)(8,35)(10,25)(12,27)(14,38)(16,40)(18,42)(20,44)(22,46)(24,48), (1,47,28,23)(2,48,29,24)(3,13,30,37)(4,14,31,38)(5,39,32,15)(6,40,33,16)(7,17,34,41)(8,18,35,42)(9,43,36,19)(10,44,25,20)(11,21,26,45)(12,22,27,46), (1,34)(2,8)(3,36)(4,10)(5,26)(6,12)(7,28)(9,30)(11,32)(13,43)(14,20)(15,45)(16,22)(17,47)(18,24)(19,37)(21,39)(23,41)(25,31)(27,33)(29,35)(38,44)(40,46)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12,47,46,28,27,23,22)(2,45,24,11,29,21,48,26)(3,25,13,44,30,10,37,20)(4,43,38,36,31,19,14,9)(5,8,39,42,32,35,15,18)(6,41,16,7,33,17,40,34)>;
G:=Group( (2,29)(4,31)(6,33)(8,35)(10,25)(12,27)(14,38)(16,40)(18,42)(20,44)(22,46)(24,48), (1,47,28,23)(2,48,29,24)(3,13,30,37)(4,14,31,38)(5,39,32,15)(6,40,33,16)(7,17,34,41)(8,18,35,42)(9,43,36,19)(10,44,25,20)(11,21,26,45)(12,22,27,46), (1,34)(2,8)(3,36)(4,10)(5,26)(6,12)(7,28)(9,30)(11,32)(13,43)(14,20)(15,45)(16,22)(17,47)(18,24)(19,37)(21,39)(23,41)(25,31)(27,33)(29,35)(38,44)(40,46)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12,47,46,28,27,23,22)(2,45,24,11,29,21,48,26)(3,25,13,44,30,10,37,20)(4,43,38,36,31,19,14,9)(5,8,39,42,32,35,15,18)(6,41,16,7,33,17,40,34) );
G=PermutationGroup([[(2,29),(4,31),(6,33),(8,35),(10,25),(12,27),(14,38),(16,40),(18,42),(20,44),(22,46),(24,48)], [(1,47,28,23),(2,48,29,24),(3,13,30,37),(4,14,31,38),(5,39,32,15),(6,40,33,16),(7,17,34,41),(8,18,35,42),(9,43,36,19),(10,44,25,20),(11,21,26,45),(12,22,27,46)], [(1,34),(2,8),(3,36),(4,10),(5,26),(6,12),(7,28),(9,30),(11,32),(13,43),(14,20),(15,45),(16,22),(17,47),(18,24),(19,37),(21,39),(23,41),(25,31),(27,33),(29,35),(38,44),(40,46),(42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,12,47,46,28,27,23,22),(2,45,24,11,29,21,48,26),(3,25,13,44,30,10,37,20),(4,43,38,36,31,19,14,9),(5,8,39,42,32,35,15,18),(6,41,16,7,33,17,40,34)]])
Matrix representation of (C2×D4).D6 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 46 | 0 | 0 | 0 |
0 | 0 | 0 | 27 | 0 | 0 |
0 | 0 | 0 | 0 | 27 | 0 |
0 | 0 | 0 | 0 | 0 | 46 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 46 | 0 | 0 |
0 | 0 | 27 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 27 |
0 | 0 | 0 | 0 | 46 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 27 | 0 | 0 |
0 | 0 | 46 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 46 | 0 |
0 | 0 | 0 | 0 | 0 | 46 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,46,0,0,0,0,0,0,27,0,0,0,0,0,0,27,0,0,0,0,0,0,46],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,27,0,0,0,0,46,0,0,0,0,0,0,0,0,46,0,0,0,0,27,0],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,46,0,0,0,0,27,0,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,46,0,0,0,0,0,0,46,0,0] >;
(C2×D4).D6 in GAP, Magma, Sage, TeX
(C_2\times D_4).D_6
% in TeX
G:=Group("(C2xD4).D6");
// GroupNames label
G:=SmallGroup(192,31);
// by ID
G=gap.SmallGroup(192,31);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,141,36,422,346,297,851,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=1,d^6=a*b^2*c,e^2=b*a=d*b*d^-1=a*b,e*c*e^-1=a*c=c*a,d*a*d^-1=e*a*e^-1=a*b^2,c*b*c=e*b*e^-1=b^-1,d*c*d^-1=b^2*c,e*d*e^-1=b*c*d^5>;
// generators/relations
Export