extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1D12 = C3⋊C2≀C4 | φ: D12/C3 → D4 ⊆ Aut C2×C4 | 24 | 8+ | (C2xC4).1D12 | 192,30 |
(C2×C4).2D12 = (C2×D4).D6 | φ: D12/C3 → D4 ⊆ Aut C2×C4 | 48 | 8- | (C2xC4).2D12 | 192,31 |
(C2×C4).3D12 = (C2×C4).D12 | φ: D12/C3 → D4 ⊆ Aut C2×C4 | 48 | 8+ | (C2xC4).3D12 | 192,36 |
(C2×C4).4D12 = (C2×C12).D4 | φ: D12/C3 → D4 ⊆ Aut C2×C4 | 48 | 8- | (C2xC4).4D12 | 192,37 |
(C2×C4).5D12 = C23.5D12 | φ: D12/C3 → D4 ⊆ Aut C2×C4 | 48 | 8- | (C2xC4).5D12 | 192,301 |
(C2×C4).6D12 = D12.4D4 | φ: D12/C3 → D4 ⊆ Aut C2×C4 | 48 | 8- | (C2xC4).6D12 | 192,311 |
(C2×C4).7D12 = D12.5D4 | φ: D12/C3 → D4 ⊆ Aut C2×C4 | 48 | 8+ | (C2xC4).7D12 | 192,312 |
(C2×C4).8D12 = C24.Q8 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).8D12 | 192,72 |
(C2×C4).9D12 = M5(2)⋊S3 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | 4+ | (C2xC4).9D12 | 192,75 |
(C2×C4).10D12 = C12.4D8 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | 4- | (C2xC4).10D12 | 192,76 |
(C2×C4).11D12 = D24⋊2C4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).11D12 | 192,77 |
(C2×C4).12D12 = C12.(C4⋊C4) | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).12D12 | 192,89 |
(C2×C4).13D12 = C42⋊3Dic3 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).13D12 | 192,90 |
(C2×C4).14D12 = (C2×C24)⋊C4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).14D12 | 192,115 |
(C2×C4).15D12 = C12.21C42 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).15D12 | 192,119 |
(C2×C4).16D12 = (C2×C4)⋊Dic6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).16D12 | 192,215 |
(C2×C4).17D12 = (C2×C4).17D12 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).17D12 | 192,218 |
(C2×C4).18D12 = (C22×C4).85D6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).18D12 | 192,220 |
(C2×C4).19D12 = C6.C22≀C2 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).19D12 | 192,231 |
(C2×C4).20D12 = (C22×S3)⋊Q8 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).20D12 | 192,232 |
(C2×C4).21D12 = (C2×C4).21D12 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).21D12 | 192,233 |
(C2×C4).22D12 = (C2×C12).33D4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).22D12 | 192,236 |
(C2×C4).23D12 = C8⋊Dic6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).23D12 | 192,261 |
(C2×C4).24D12 = C42.14D6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).24D12 | 192,262 |
(C2×C4).25D12 = C8⋊D12 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).25D12 | 192,271 |
(C2×C4).26D12 = C42.19D6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).26D12 | 192,272 |
(C2×C4).27D12 = C42.20D6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).27D12 | 192,273 |
(C2×C4).28D12 = C8.D12 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).28D12 | 192,274 |
(C2×C4).29D12 = C23.39D12 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).29D12 | 192,280 |
(C2×C4).30D12 = C23.40D12 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).30D12 | 192,281 |
(C2×C4).31D12 = D12.31D4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).31D12 | 192,290 |
(C2×C4).32D12 = D12⋊13D4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).32D12 | 192,291 |
(C2×C4).33D12 = C23.43D12 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).33D12 | 192,294 |
(C2×C4).34D12 = C22.D24 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).34D12 | 192,295 |
(C2×C4).35D12 = Dic6⋊14D4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).35D12 | 192,297 |
(C2×C4).36D12 = Dic6.32D4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).36D12 | 192,298 |
(C2×C4).37D12 = Dic6.3Q8 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).37D12 | 192,388 |
(C2×C4).38D12 = D12.19D4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).38D12 | 192,403 |
(C2×C4).39D12 = C42.36D6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).39D12 | 192,404 |
(C2×C4).40D12 = D12.3Q8 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).40D12 | 192,406 |
(C2×C4).41D12 = C16⋊D6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | 4+ | (C2xC4).41D12 | 192,467 |
(C2×C4).42D12 = C16.D6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | 4- | (C2xC4).42D12 | 192,468 |
(C2×C4).43D12 = C4○D12⋊C4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).43D12 | 192,525 |
(C2×C4).44D12 = (C2×C4).44D12 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).44D12 | 192,540 |
(C2×C4).45D12 = (C2×C12).56D4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).45D12 | 192,553 |
(C2×C4).46D12 = C4⋊C4⋊36D6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).46D12 | 192,560 |
(C2×C4).47D12 = C4⋊C4.237D6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).47D12 | 192,563 |
(C2×C4).48D12 = (C2×D12)⋊13C4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).48D12 | 192,565 |
(C2×C4).49D12 = C2×C12.46D4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).49D12 | 192,689 |
(C2×C4).50D12 = M4(2).31D6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).50D12 | 192,691 |
(C2×C4).51D12 = C24⋊2D4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).51D12 | 192,693 |
(C2×C4).52D12 = C24⋊3D4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).52D12 | 192,694 |
(C2×C4).53D12 = C2×C12.47D4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).53D12 | 192,695 |
(C2×C4).54D12 = C24.4D4 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).54D12 | 192,696 |
(C2×C4).55D12 = M4(2)⋊24D6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).55D12 | 192,698 |
(C2×C4).56D12 = C42.92D6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).56D12 | 192,1085 |
(C2×C4).57D12 = C2×C8⋊D6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).57D12 | 192,1305 |
(C2×C4).58D12 = C2×C8.D6 | φ: D12/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).58D12 | 192,1306 |
(C2×C4).59D12 = C24.13Q8 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).59D12 | 192,242 |
(C2×C4).60D12 = C4×C24⋊C2 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).60D12 | 192,250 |
(C2×C4).61D12 = C4×D24 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).61D12 | 192,251 |
(C2×C4).62D12 = C8.8D12 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).62D12 | 192,255 |
(C2×C4).63D12 = C42.264D6 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).63D12 | 192,256 |
(C2×C4).64D12 = C4×Dic12 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).64D12 | 192,257 |
(C2×C4).65D12 = C12⋊4(C4⋊C4) | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).65D12 | 192,487 |
(C2×C4).66D12 = (C2×C42)⋊3S3 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).66D12 | 192,499 |
(C2×C4).67D12 = C24⋊30D4 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).67D12 | 192,673 |
(C2×C4).68D12 = C24⋊29D4 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).68D12 | 192,674 |
(C2×C4).69D12 = C24.82D4 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).69D12 | 192,675 |
(C2×C4).70D12 = C2.Dic24 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).70D12 | 192,62 |
(C2×C4).71D12 = C48⋊5C4 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).71D12 | 192,63 |
(C2×C4).72D12 = C48⋊6C4 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).72D12 | 192,64 |
(C2×C4).73D12 = C48.C4 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | 2 | (C2xC4).73D12 | 192,65 |
(C2×C4).74D12 = C2.D48 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).74D12 | 192,68 |
(C2×C4).75D12 = D24.1C4 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | 2 | (C2xC4).75D12 | 192,69 |
(C2×C4).76D12 = C24⋊9Q8 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).76D12 | 192,239 |
(C2×C4).77D12 = C12.14Q16 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).77D12 | 192,240 |
(C2×C4).78D12 = C24⋊8Q8 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).78D12 | 192,241 |
(C2×C4).79D12 = C8⋊5D12 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).79D12 | 192,252 |
(C2×C4).80D12 = C4.5D24 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).80D12 | 192,253 |
(C2×C4).81D12 = C12⋊4D8 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).81D12 | 192,254 |
(C2×C4).82D12 = C12⋊4Q16 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).82D12 | 192,258 |
(C2×C4).83D12 = C2×D48 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).83D12 | 192,461 |
(C2×C4).84D12 = C2×C48⋊C2 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).84D12 | 192,462 |
(C2×C4).85D12 = D48⋊7C2 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | 2 | (C2xC4).85D12 | 192,463 |
(C2×C4).86D12 = C2×Dic24 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).86D12 | 192,464 |
(C2×C4).87D12 = C12⋊7M4(2) | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).87D12 | 192,483 |
(C2×C4).88D12 = C2×C42⋊4S3 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).88D12 | 192,486 |
(C2×C4).89D12 = (C2×Dic6)⋊7C4 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).89D12 | 192,488 |
(C2×C4).90D12 = C42⋊10Dic3 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).90D12 | 192,494 |
(C2×C4).91D12 = C42⋊11Dic3 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).91D12 | 192,495 |
(C2×C4).92D12 = C2×C2.Dic12 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).92D12 | 192,662 |
(C2×C4).93D12 = C2×C8⋊Dic3 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).93D12 | 192,663 |
(C2×C4).94D12 = C2×C24⋊1C4 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).94D12 | 192,664 |
(C2×C4).95D12 = (C22×C8)⋊7S3 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).95D12 | 192,669 |
(C2×C4).96D12 = C2×C2.D24 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).96D12 | 192,671 |
(C2×C4).97D12 = C2×C12⋊2Q8 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).97D12 | 192,1027 |
(C2×C4).98D12 = C2×C42⋊7S3 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).98D12 | 192,1035 |
(C2×C4).99D12 = C22×C24⋊C2 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).99D12 | 192,1298 |
(C2×C4).100D12 = C22×D24 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).100D12 | 192,1299 |
(C2×C4).101D12 = C2×C4○D24 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).101D12 | 192,1300 |
(C2×C4).102D12 = C22×Dic12 | φ: D12/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).102D12 | 192,1301 |
(C2×C4).103D12 = C6.C4≀C2 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).103D12 | 192,10 |
(C2×C4).104D12 = C4⋊Dic3⋊C4 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).104D12 | 192,11 |
(C2×C4).105D12 = C42.D6 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).105D12 | 192,23 |
(C2×C4).106D12 = C42.2D6 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).106D12 | 192,24 |
(C2×C4).107D12 = (C22×S3)⋊C8 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).107D12 | 192,27 |
(C2×C4).108D12 = (C2×Dic3)⋊C8 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).108D12 | 192,28 |
(C2×C4).109D12 = D12⋊2C8 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).109D12 | 192,42 |
(C2×C4).110D12 = Dic6⋊2C8 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).110D12 | 192,43 |
(C2×C4).111D12 = C2.(C4×D12) | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).111D12 | 192,212 |
(C2×C4).112D12 = D6⋊C4⋊C4 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).112D12 | 192,227 |
(C2×C4).113D12 = D6⋊C4⋊3C4 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).113D12 | 192,229 |
(C2×C4).114D12 = C42.16D6 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).114D12 | 192,269 |
(C2×C4).115D12 = D24⋊C4 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).115D12 | 192,270 |
(C2×C4).116D12 = Dic12⋊C4 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).116D12 | 192,275 |
(C2×C4).117D12 = C23.15D12 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).117D12 | 192,282 |
(C2×C4).118D12 = D12.32D4 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).118D12 | 192,292 |
(C2×C4).119D12 = D12⋊14D4 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).119D12 | 192,293 |
(C2×C4).120D12 = C23.18D12 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).120D12 | 192,296 |
(C2×C4).121D12 = C4.Dic12 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).121D12 | 192,40 |
(C2×C4).122D12 = C12.47D8 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).122D12 | 192,41 |
(C2×C4).123D12 = C4.D24 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).123D12 | 192,44 |
(C2×C4).124D12 = C12.2D8 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).124D12 | 192,45 |
(C2×C4).125D12 = C12.C42 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).125D12 | 192,88 |
(C2×C4).126D12 = C12.2C42 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).126D12 | 192,91 |
(C2×C4).127D12 = (C2×C12).Q8 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).127D12 | 192,92 |
(C2×C4).128D12 = M4(2)⋊Dic3 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).128D12 | 192,113 |
(C2×C4).129D12 = C12.4C42 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).129D12 | 192,117 |
(C2×C4).130D12 = M4(2)⋊4Dic3 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).130D12 | 192,118 |
(C2×C4).131D12 = C12⋊SD16 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).131D12 | 192,400 |
(C2×C4).132D12 = D12⋊3Q8 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).132D12 | 192,401 |
(C2×C4).133D12 = C4⋊D24 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).133D12 | 192,402 |
(C2×C4).134D12 = D12⋊4Q8 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).134D12 | 192,405 |
(C2×C4).135D12 = Dic6⋊8D4 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).135D12 | 192,407 |
(C2×C4).136D12 = C4⋊Dic12 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).136D12 | 192,408 |
(C2×C4).137D12 = Dic6⋊3Q8 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).137D12 | 192,409 |
(C2×C4).138D12 = Dic6⋊4Q8 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).138D12 | 192,410 |
(C2×C4).139D12 = C2×C6.D8 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).139D12 | 192,524 |
(C2×C4).140D12 = C2×C6.SD16 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).140D12 | 192,528 |
(C2×C4).141D12 = C4.(D6⋊C4) | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).141D12 | 192,532 |
(C2×C4).142D12 = C4⋊C4⋊6Dic3 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).142D12 | 192,543 |
(C2×C4).143D12 = C4⋊(D6⋊C4) | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).143D12 | 192,546 |
(C2×C4).144D12 = (C2×D12)⋊10C4 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).144D12 | 192,547 |
(C2×C4).145D12 = C42.43D6 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).145D12 | 192,558 |
(C2×C4).146D12 = C4.(C2×D12) | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).146D12 | 192,561 |
(C2×C4).147D12 = C42⋊6D6 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).147D12 | 192,564 |
(C2×C4).148D12 = C23.51D12 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).148D12 | 192,679 |
(C2×C4).149D12 = C23.52D12 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).149D12 | 192,680 |
(C2×C4).150D12 = C23.9Dic6 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).150D12 | 192,684 |
(C2×C4).151D12 = D6⋊6M4(2) | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).151D12 | 192,685 |
(C2×C4).152D12 = D6⋊C8⋊40C2 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).152D12 | 192,688 |
(C2×C4).153D12 = C23.53D12 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).153D12 | 192,690 |
(C2×C4).154D12 = C23.54D12 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).154D12 | 192,692 |
(C2×C4).155D12 = C2×D12⋊C4 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).155D12 | 192,697 |
(C2×C4).156D12 = C2×C4.D12 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).156D12 | 192,1068 |
(C2×C4).157D12 = C24.9C23 | φ: D12/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).157D12 | 192,1307 |
(C2×C4).158D12 = C4.8Dic12 | central extension (φ=1) | 192 | | (C2xC4).158D12 | 192,15 |
(C2×C4).159D12 = C24⋊2C8 | central extension (φ=1) | 192 | | (C2xC4).159D12 | 192,16 |
(C2×C4).160D12 = C24⋊1C8 | central extension (φ=1) | 192 | | (C2xC4).160D12 | 192,17 |
(C2×C4).161D12 = C4.17D24 | central extension (φ=1) | 96 | | (C2xC4).161D12 | 192,18 |
(C2×C4).162D12 = C12.8C42 | central extension (φ=1) | 48 | | (C2xC4).162D12 | 192,82 |
(C2×C4).163D12 = (C2×C12)⋊3C8 | central extension (φ=1) | 192 | | (C2xC4).163D12 | 192,83 |
(C2×C4).164D12 = (C2×C24)⋊5C4 | central extension (φ=1) | 192 | | (C2xC4).164D12 | 192,109 |
(C2×C4).165D12 = C12.10C42 | central extension (φ=1) | 96 | | (C2xC4).165D12 | 192,111 |
(C2×C4).166D12 = C2×C12⋊C8 | central extension (φ=1) | 192 | | (C2xC4).166D12 | 192,482 |
(C2×C4).167D12 = C4×C4⋊Dic3 | central extension (φ=1) | 192 | | (C2xC4).167D12 | 192,493 |
(C2×C4).168D12 = C4×D6⋊C4 | central extension (φ=1) | 96 | | (C2xC4).168D12 | 192,497 |
(C2×C4).169D12 = C23.27D12 | central extension (φ=1) | 96 | | (C2xC4).169D12 | 192,665 |
(C2×C4).170D12 = C2×C24.C4 | central extension (φ=1) | 96 | | (C2xC4).170D12 | 192,666 |
(C2×C4).171D12 = C2×D6⋊C8 | central extension (φ=1) | 96 | | (C2xC4).171D12 | 192,667 |
(C2×C4).172D12 = C23.28D12 | central extension (φ=1) | 96 | | (C2xC4).172D12 | 192,672 |