Aliases: D8.A4, 2- (1+4)⋊C6, SL2(𝔽3).13D4, Q8○D8⋊C3, C8.A4⋊4C2, C8○D4⋊2C6, C8.3(C2×A4), D4.A4⋊5C2, D4.3(C2×A4), C2.11(D4×A4), Q8.5(C3×D4), C4.6(C22×A4), C4.A4.17C22, C4○D4.3(C2×C6), SmallGroup(192,1019)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 259 in 73 conjugacy classes, 19 normal (13 characteristic)
C1, C2, C2 [×3], C3, C4, C4 [×3], C22 [×3], C6 [×3], C8, C8, C2×C4 [×5], D4 [×2], D4 [×3], Q8, Q8 [×4], C12, C2×C6 [×2], C2×C8, M4(2), D8, SD16 [×2], Q16 [×3], C2×Q8 [×4], C4○D4, C4○D4 [×4], C24, SL2(𝔽3), C3×D4 [×2], C8○D4, C2×Q16, C4○D8, C8.C22 [×2], 2- (1+4) [×2], C3×D8, C2×SL2(𝔽3) [×2], C4.A4, Q8○D8, C8.A4, D4.A4 [×2], D8.A4
Quotients:
C1, C2 [×3], C3, C22, C6 [×3], D4, A4, C2×C6, C3×D4, C2×A4 [×3], C22×A4, D4×A4, D8.A4
Generators and relations
G = < a,b,c,d,e | a8=b2=e3=1, c2=d2=a4, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a4c, ece-1=a4cd, ede-1=c >
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 8)(3 7)(4 6)(9 15)(10 14)(11 13)(17 19)(20 24)(21 23)(25 31)(26 30)(27 29)
(1 12 5 16)(2 13 6 9)(3 14 7 10)(4 15 8 11)(17 27 21 31)(18 28 22 32)(19 29 23 25)(20 30 24 26)
(1 28 5 32)(2 29 6 25)(3 30 7 26)(4 31 8 27)(9 23 13 19)(10 24 14 20)(11 17 15 21)(12 18 16 22)
(9 25 19)(10 26 20)(11 27 21)(12 28 22)(13 29 23)(14 30 24)(15 31 17)(16 32 18)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,19)(20,24)(21,23)(25,31)(26,30)(27,29), (1,12,5,16)(2,13,6,9)(3,14,7,10)(4,15,8,11)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26), (1,28,5,32)(2,29,6,25)(3,30,7,26)(4,31,8,27)(9,23,13,19)(10,24,14,20)(11,17,15,21)(12,18,16,22), (9,25,19)(10,26,20)(11,27,21)(12,28,22)(13,29,23)(14,30,24)(15,31,17)(16,32,18)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,19)(20,24)(21,23)(25,31)(26,30)(27,29), (1,12,5,16)(2,13,6,9)(3,14,7,10)(4,15,8,11)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26), (1,28,5,32)(2,29,6,25)(3,30,7,26)(4,31,8,27)(9,23,13,19)(10,24,14,20)(11,17,15,21)(12,18,16,22), (9,25,19)(10,26,20)(11,27,21)(12,28,22)(13,29,23)(14,30,24)(15,31,17)(16,32,18) );
G=PermutationGroup([(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,8),(3,7),(4,6),(9,15),(10,14),(11,13),(17,19),(20,24),(21,23),(25,31),(26,30),(27,29)], [(1,12,5,16),(2,13,6,9),(3,14,7,10),(4,15,8,11),(17,27,21,31),(18,28,22,32),(19,29,23,25),(20,30,24,26)], [(1,28,5,32),(2,29,6,25),(3,30,7,26),(4,31,8,27),(9,23,13,19),(10,24,14,20),(11,17,15,21),(12,18,16,22)], [(9,25,19),(10,26,20),(11,27,21),(12,28,22),(13,29,23),(14,30,24),(15,31,17),(16,32,18)])
Matrix representation ►G ⊆ GL4(𝔽7) generated by
1 | 1 | 3 | 6 |
2 | 4 | 0 | 5 |
5 | 4 | 3 | 4 |
2 | 0 | 3 | 5 |
6 | 0 | 0 | 0 |
6 | 6 | 6 | 3 |
5 | 6 | 4 | 5 |
1 | 2 | 1 | 5 |
6 | 2 | 1 | 4 |
5 | 4 | 4 | 4 |
6 | 0 | 0 | 1 |
6 | 2 | 0 | 4 |
6 | 6 | 3 | 5 |
2 | 1 | 6 | 0 |
0 | 0 | 5 | 3 |
0 | 0 | 3 | 2 |
5 | 5 | 6 | 3 |
2 | 1 | 5 | 0 |
0 | 3 | 4 | 3 |
5 | 1 | 2 | 2 |
G:=sub<GL(4,GF(7))| [1,2,5,2,1,4,4,0,3,0,3,3,6,5,4,5],[6,6,5,1,0,6,6,2,0,6,4,1,0,3,5,5],[6,5,6,6,2,4,0,2,1,4,0,0,4,4,1,4],[6,2,0,0,6,1,0,0,3,6,5,3,5,0,3,2],[5,2,0,5,5,1,3,1,6,5,4,2,3,0,3,2] >;
Character table of D8.A4
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 8C | 12A | 12B | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 4 | 4 | 6 | 4 | 4 | 2 | 6 | 12 | 12 | 4 | 4 | 16 | 16 | 16 | 16 | 2 | 2 | 12 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ6 | ζ65 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ7 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ8 | 1 | 1 | 1 | -1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ3 | ζ32 | -1 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ9 | 1 | 1 | 1 | -1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ32 | ζ3 | -1 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ10 | 1 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | -1 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ11 | 1 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | -1 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ12 | 1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ65 | ζ6 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 6 |
ρ13 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 0 | 0 | -2 | -1-√-3 | -1+√-3 | -2 | 2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ15 | 2 | 2 | 0 | 0 | -2 | -1+√-3 | -1-√-3 | -2 | 2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ16 | 3 | 3 | -3 | -3 | -1 | 0 | 0 | 3 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ17 | 3 | 3 | 3 | 3 | -1 | 0 | 0 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ18 | 3 | 3 | -3 | 3 | -1 | 0 | 0 | 3 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ19 | 3 | 3 | 3 | -3 | -1 | 0 | 0 | 3 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | 0 | 0 | 0 | √2 | √2 | √2 | √2 | symplectic faithful, Schur index 2 |
ρ21 | 4 | -4 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | 0 | 0 | 0 | √2 | √2 | √2 | √2 | symplectic faithful, Schur index 2 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | 0 | 0 | 0 | -ζ83ζ3+ζ8ζ3 | -ζ87ζ3+ζ85ζ3 | -ζ83ζ32+ζ8ζ32 | -ζ87ζ32+ζ85ζ32 | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | 0 | 0 | 0 | -ζ87ζ3+ζ85ζ3 | -ζ83ζ3+ζ8ζ3 | -ζ87ζ32+ζ85ζ32 | -ζ83ζ32+ζ8ζ32 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | 0 | 0 | 0 | -ζ83ζ32+ζ8ζ32 | -ζ87ζ32+ζ85ζ32 | -ζ83ζ3+ζ8ζ3 | -ζ87ζ3+ζ85ζ3 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | 0 | 0 | 0 | -ζ87ζ32+ζ85ζ32 | -ζ83ζ32+ζ8ζ32 | -ζ87ζ3+ζ85ζ3 | -ζ83ζ3+ζ8ζ3 | complex faithful |
ρ26 | 6 | 6 | 0 | 0 | 2 | 0 | 0 | -6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×A4 |
In GAP, Magma, Sage, TeX
D_8.A_4
% in TeX
G:=Group("D8.A4");
// GroupNames label
G:=SmallGroup(192,1019);
// by ID
G=gap.SmallGroup(192,1019);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,2,-2,197,3027,1522,248,438,172,775,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^8=b^2=e^3=1,c^2=d^2=a^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^4*c,e*c*e^-1=a^4*c*d,e*d*e^-1=c>;
// generators/relations