Aliases: SD16.A4, 2- (1+4).C6, 2+ (1+4)⋊2C6, SL2(𝔽3).12D4, D4○SD16⋊C3, C8○D4⋊1C6, C8.A4⋊7C2, C8.4(C2×A4), D4.A4⋊4C2, D4.2(C2×A4), C2.10(D4×A4), Q8.A4⋊5C2, Q8.5(C2×A4), Q8.4(C3×D4), C4.5(C22×A4), C4.A4.16C22, C4○D4.2(C2×C6), SmallGroup(192,1018)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 275 in 73 conjugacy classes, 19 normal (all characteristic)
C1, C2, C2 [×3], C3, C4, C4 [×3], C22 [×4], C6 [×2], C8, C8, C2×C4 [×4], D4, D4 [×5], Q8 [×2], Q8 [×2], C23, C12 [×2], C2×C6, C2×C8, M4(2), D8, SD16, SD16 [×3], Q16, C2×D4 [×2], C2×Q8 [×2], C4○D4, C4○D4 [×4], C24, SL2(𝔽3), C3×D4, C3×Q8, C8○D4, C2×SD16, C4○D8, C8⋊C22, C8.C22, 2+ (1+4), 2- (1+4), C3×SD16, C2×SL2(𝔽3), C4.A4, C4.A4, D4○SD16, C8.A4, Q8.A4, D4.A4, SD16.A4
Quotients:
C1, C2 [×3], C3, C22, C6 [×3], D4, A4, C2×C6, C3×D4, C2×A4 [×3], C22×A4, D4×A4, SD16.A4
Generators and relations
G = < a,b,c,d,e | a8=b2=e3=1, c2=d2=a4, bab=a3, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a4c, ece-1=a4cd, ede-1=c >
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 4)(3 7)(6 8)(9 15)(11 13)(12 16)(17 19)(18 22)(21 23)(26 28)(27 31)(30 32)
(1 10 5 14)(2 11 6 15)(3 12 7 16)(4 13 8 9)(17 30 21 26)(18 31 22 27)(19 32 23 28)(20 25 24 29)
(1 20 5 24)(2 21 6 17)(3 22 7 18)(4 23 8 19)(9 28 13 32)(10 29 14 25)(11 30 15 26)(12 31 16 27)
(9 19 32)(10 20 25)(11 21 26)(12 22 27)(13 23 28)(14 24 29)(15 17 30)(16 18 31)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,19)(18,22)(21,23)(26,28)(27,31)(30,32), (1,10,5,14)(2,11,6,15)(3,12,7,16)(4,13,8,9)(17,30,21,26)(18,31,22,27)(19,32,23,28)(20,25,24,29), (1,20,5,24)(2,21,6,17)(3,22,7,18)(4,23,8,19)(9,28,13,32)(10,29,14,25)(11,30,15,26)(12,31,16,27), (9,19,32)(10,20,25)(11,21,26)(12,22,27)(13,23,28)(14,24,29)(15,17,30)(16,18,31)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,19)(18,22)(21,23)(26,28)(27,31)(30,32), (1,10,5,14)(2,11,6,15)(3,12,7,16)(4,13,8,9)(17,30,21,26)(18,31,22,27)(19,32,23,28)(20,25,24,29), (1,20,5,24)(2,21,6,17)(3,22,7,18)(4,23,8,19)(9,28,13,32)(10,29,14,25)(11,30,15,26)(12,31,16,27), (9,19,32)(10,20,25)(11,21,26)(12,22,27)(13,23,28)(14,24,29)(15,17,30)(16,18,31) );
G=PermutationGroup([(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,4),(3,7),(6,8),(9,15),(11,13),(12,16),(17,19),(18,22),(21,23),(26,28),(27,31),(30,32)], [(1,10,5,14),(2,11,6,15),(3,12,7,16),(4,13,8,9),(17,30,21,26),(18,31,22,27),(19,32,23,28),(20,25,24,29)], [(1,20,5,24),(2,21,6,17),(3,22,7,18),(4,23,8,19),(9,28,13,32),(10,29,14,25),(11,30,15,26),(12,31,16,27)], [(9,19,32),(10,20,25),(11,21,26),(12,22,27),(13,23,28),(14,24,29),(15,17,30),(16,18,31)])
Matrix representation ►G ⊆ GL4(𝔽3) generated by
2 | 1 | 1 | 2 |
0 | 0 | 2 | 0 |
0 | 2 | 2 | 0 |
2 | 2 | 1 | 0 |
1 | 2 | 0 | 1 |
1 | 2 | 1 | 1 |
2 | 1 | 0 | 0 |
1 | 0 | 1 | 0 |
1 | 0 | 0 | 2 |
0 | 1 | 1 | 0 |
0 | 1 | 2 | 0 |
2 | 0 | 0 | 2 |
1 | 1 | 1 | 2 |
1 | 2 | 2 | 2 |
0 | 0 | 1 | 1 |
0 | 0 | 1 | 2 |
1 | 2 | 1 | 1 |
2 | 0 | 0 | 2 |
1 | 0 | 2 | 2 |
1 | 2 | 2 | 1 |
G:=sub<GL(4,GF(3))| [2,0,0,2,1,0,2,2,1,2,2,1,2,0,0,0],[1,1,2,1,2,2,1,0,0,1,0,1,1,1,0,0],[1,0,0,2,0,1,1,0,0,1,2,0,2,0,0,2],[1,1,0,0,1,2,0,0,1,2,1,1,2,2,1,2],[1,2,1,1,2,0,0,2,1,0,2,2,1,2,2,1] >;
Character table of SD16.A4
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 4 | 6 | 12 | 4 | 4 | 2 | 4 | 6 | 12 | 4 | 4 | 16 | 16 | 2 | 2 | 12 | 8 | 8 | 16 | 16 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | ζ32 | ζ3 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | -1 | -1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ6 | 1 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | 1 | 1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 6 |
ρ7 | 1 | 1 | 1 | 1 | -1 | ζ3 | ζ32 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | -1 | -1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ8 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ9 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ10 | 1 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | -1 | -1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ11 | 1 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | 1 | 1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 6 |
ρ12 | 1 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | -1 | -1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ13 | 2 | 2 | 0 | -2 | 0 | 2 | 2 | -2 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 0 | -2 | 0 | -1-√-3 | -1+√-3 | -2 | 0 | 2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ15 | 2 | 2 | 0 | -2 | 0 | -1+√-3 | -1-√-3 | -2 | 0 | 2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ16 | 3 | 3 | 3 | -1 | 1 | 0 | 0 | 3 | -3 | -1 | -1 | 0 | 0 | 0 | 0 | -3 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ17 | 3 | 3 | -3 | -1 | -1 | 0 | 0 | 3 | 3 | -1 | 1 | 0 | 0 | 0 | 0 | -3 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ18 | 3 | 3 | -3 | -1 | 1 | 0 | 0 | 3 | -3 | -1 | 1 | 0 | 0 | 0 | 0 | 3 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ19 | 3 | 3 | 3 | -1 | -1 | 0 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 3 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | √-2 | √-2 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | √-2 | √-2 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | ζ87ζ3+ζ85ζ3 | ζ83ζ3+ζ8ζ3 | ζ87ζ32+ζ85ζ32 | ζ83ζ32+ζ8ζ32 | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | ζ83ζ32+ζ8ζ32 | ζ87ζ32+ζ85ζ32 | ζ83ζ3+ζ8ζ3 | ζ87ζ3+ζ85ζ3 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | ζ83ζ3+ζ8ζ3 | ζ87ζ3+ζ85ζ3 | ζ83ζ32+ζ8ζ32 | ζ87ζ32+ζ85ζ32 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | ζ87ζ32+ζ85ζ32 | ζ83ζ32+ζ8ζ32 | ζ87ζ3+ζ85ζ3 | ζ83ζ3+ζ8ζ3 | complex faithful |
ρ26 | 6 | 6 | 0 | 2 | 0 | 0 | 0 | -6 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×A4 |
In GAP, Magma, Sage, TeX
SD_{16}.A_4
% in TeX
G:=Group("SD16.A4");
// GroupNames label
G:=SmallGroup(192,1018);
// by ID
G=gap.SmallGroup(192,1018);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,2,-2,197,680,3027,1522,248,438,172,775,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^8=b^2=e^3=1,c^2=d^2=a^4,b*a*b=a^3,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^4*c,e*c*e^-1=a^4*c*d,e*d*e^-1=c>;
// generators/relations