Extensions 1→N→G→Q→1 with N=C3×Q8 and Q=C2×C4

Direct product G=N×Q with N=C3×Q8 and Q=C2×C4
dρLabelID
Q8×C2×C12192Q8xC2xC12192,1405

Semidirect products G=N:Q with N=C3×Q8 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C3×Q8)⋊1(C2×C4) = Dic37SD16φ: C2×C4/C2C22 ⊆ Out C3×Q896(C3xQ8):1(C2xC4)192,347
(C3×Q8)⋊2(C2×C4) = S3×Q8⋊C4φ: C2×C4/C2C22 ⊆ Out C3×Q896(C3xQ8):2(C2xC4)192,360
(C3×Q8)⋊3(C2×C4) = Q87(C4×S3)φ: C2×C4/C2C22 ⊆ Out C3×Q896(C3xQ8):3(C2xC4)192,362
(C3×Q8)⋊4(C2×C4) = Q83(C4×S3)φ: C2×C4/C2C22 ⊆ Out C3×Q896(C3xQ8):4(C2xC4)192,376
(C3×Q8)⋊5(C2×C4) = S3×C4≀C2φ: C2×C4/C2C22 ⊆ Out C3×Q8244(C3xQ8):5(C2xC4)192,379
(C3×Q8)⋊6(C2×C4) = Dic3×SD16φ: C2×C4/C2C22 ⊆ Out C3×Q896(C3xQ8):6(C2xC4)192,720
(C3×Q8)⋊7(C2×C4) = SD16⋊Dic3φ: C2×C4/C2C22 ⊆ Out C3×Q896(C3xQ8):7(C2xC4)192,723
(C3×Q8)⋊8(C2×C4) = C4×Q82S3φ: C2×C4/C4C2 ⊆ Out C3×Q896(C3xQ8):8(C2xC4)192,584
(C3×Q8)⋊9(C2×C4) = C42.56D6φ: C2×C4/C4C2 ⊆ Out C3×Q896(C3xQ8):9(C2xC4)192,585
(C3×Q8)⋊10(C2×C4) = C4×S3×Q8φ: C2×C4/C4C2 ⊆ Out C3×Q896(C3xQ8):10(C2xC4)192,1130
(C3×Q8)⋊11(C2×C4) = C4×Q83S3φ: C2×C4/C4C2 ⊆ Out C3×Q896(C3xQ8):11(C2xC4)192,1132
(C3×Q8)⋊12(C2×C4) = C42.126D6φ: C2×C4/C4C2 ⊆ Out C3×Q896(C3xQ8):12(C2xC4)192,1133
(C3×Q8)⋊13(C2×C4) = C12×SD16φ: C2×C4/C4C2 ⊆ Out C3×Q896(C3xQ8):13(C2xC4)192,871
(C3×Q8)⋊14(C2×C4) = C3×SD16⋊C4φ: C2×C4/C4C2 ⊆ Out C3×Q896(C3xQ8):14(C2xC4)192,873
(C3×Q8)⋊15(C2×C4) = C2×Q82Dic3φ: C2×C4/C22C2 ⊆ Out C3×Q8192(C3xQ8):15(C2xC4)192,783
(C3×Q8)⋊16(C2×C4) = C4○D43Dic3φ: C2×C4/C22C2 ⊆ Out C3×Q896(C3xQ8):16(C2xC4)192,791
(C3×Q8)⋊17(C2×C4) = C2×Q83Dic3φ: C2×C4/C22C2 ⊆ Out C3×Q848(C3xQ8):17(C2xC4)192,794
(C3×Q8)⋊18(C2×C4) = C2×Q8×Dic3φ: C2×C4/C22C2 ⊆ Out C3×Q8192(C3xQ8):18(C2xC4)192,1370
(C3×Q8)⋊19(C2×C4) = Dic3×C4○D4φ: C2×C4/C22C2 ⊆ Out C3×Q896(C3xQ8):19(C2xC4)192,1385
(C3×Q8)⋊20(C2×C4) = C6.1442+ 1+4φ: C2×C4/C22C2 ⊆ Out C3×Q896(C3xQ8):20(C2xC4)192,1386
(C3×Q8)⋊21(C2×C4) = C6×Q8⋊C4φ: C2×C4/C22C2 ⊆ Out C3×Q8192(C3xQ8):21(C2xC4)192,848
(C3×Q8)⋊22(C2×C4) = C3×C23.36D4φ: C2×C4/C22C2 ⊆ Out C3×Q896(C3xQ8):22(C2xC4)192,850
(C3×Q8)⋊23(C2×C4) = C6×C4≀C2φ: C2×C4/C22C2 ⊆ Out C3×Q848(C3xQ8):23(C2xC4)192,853
(C3×Q8)⋊24(C2×C4) = C12×C4○D4φ: trivial image96(C3xQ8):24(C2xC4)192,1406
(C3×Q8)⋊25(C2×C4) = C3×C23.33C23φ: trivial image96(C3xQ8):25(C2xC4)192,1409

Non-split extensions G=N.Q with N=C3×Q8 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C3×Q8).1(C2×C4) = C3⋊Q16⋊C4φ: C2×C4/C2C22 ⊆ Out C3×Q8192(C3xQ8).1(C2xC4)192,348
(C3×Q8).2(C2×C4) = Dic34Q16φ: C2×C4/C2C22 ⊆ Out C3×Q8192(C3xQ8).2(C2xC4)192,349
(C3×Q8).3(C2×C4) = (S3×Q8)⋊C4φ: C2×C4/C2C22 ⊆ Out C3×Q896(C3xQ8).3(C2xC4)192,361
(C3×Q8).4(C2×C4) = C4⋊C4.150D6φ: C2×C4/C2C22 ⊆ Out C3×Q896(C3xQ8).4(C2xC4)192,363
(C3×Q8).5(C2×C4) = C423D6φ: C2×C4/C2C22 ⊆ Out C3×Q8484(C3xQ8).5(C2xC4)192,380
(C3×Q8).6(C2×C4) = M4(2).22D6φ: C2×C4/C2C22 ⊆ Out C3×Q8484(C3xQ8).6(C2xC4)192,382
(C3×Q8).7(C2×C4) = C42.196D6φ: C2×C4/C2C22 ⊆ Out C3×Q8484(C3xQ8).7(C2xC4)192,383
(C3×Q8).8(C2×C4) = Dic3×Q16φ: C2×C4/C2C22 ⊆ Out C3×Q8192(C3xQ8).8(C2xC4)192,740
(C3×Q8).9(C2×C4) = Q16⋊Dic3φ: C2×C4/C2C22 ⊆ Out C3×Q8192(C3xQ8).9(C2xC4)192,743
(C3×Q8).10(C2×C4) = D85Dic3φ: C2×C4/C2C22 ⊆ Out C3×Q8484(C3xQ8).10(C2xC4)192,755
(C3×Q8).11(C2×C4) = D84Dic3φ: C2×C4/C2C22 ⊆ Out C3×Q8484(C3xQ8).11(C2xC4)192,756
(C3×Q8).12(C2×C4) = C4×C3⋊Q16φ: C2×C4/C4C2 ⊆ Out C3×Q8192(C3xQ8).12(C2xC4)192,588
(C3×Q8).13(C2×C4) = C42.59D6φ: C2×C4/C4C2 ⊆ Out C3×Q8192(C3xQ8).13(C2xC4)192,589
(C3×Q8).14(C2×C4) = C24.100D4φ: C2×C4/C4C2 ⊆ Out C3×Q8484(C3xQ8).14(C2xC4)192,703
(C3×Q8).15(C2×C4) = C24.54D4φ: C2×C4/C4C2 ⊆ Out C3×Q8484(C3xQ8).15(C2xC4)192,704
(C3×Q8).16(C2×C4) = C42.125D6φ: C2×C4/C4C2 ⊆ Out C3×Q896(C3xQ8).16(C2xC4)192,1131
(C3×Q8).17(C2×C4) = S3×C8○D4φ: C2×C4/C4C2 ⊆ Out C3×Q8484(C3xQ8).17(C2xC4)192,1308
(C3×Q8).18(C2×C4) = M4(2)⋊28D6φ: C2×C4/C4C2 ⊆ Out C3×Q8484(C3xQ8).18(C2xC4)192,1309
(C3×Q8).19(C2×C4) = C12×Q16φ: C2×C4/C4C2 ⊆ Out C3×Q8192(C3xQ8).19(C2xC4)192,872
(C3×Q8).20(C2×C4) = C3×Q16⋊C4φ: C2×C4/C4C2 ⊆ Out C3×Q8192(C3xQ8).20(C2xC4)192,874
(C3×Q8).21(C2×C4) = C3×C8○D8φ: C2×C4/C4C2 ⊆ Out C3×Q8482(C3xQ8).21(C2xC4)192,876
(C3×Q8).22(C2×C4) = C3×C8.26D4φ: C2×C4/C4C2 ⊆ Out C3×Q8484(C3xQ8).22(C2xC4)192,877
(C3×Q8).23(C2×C4) = (C6×Q8)⋊6C4φ: C2×C4/C22C2 ⊆ Out C3×Q896(C3xQ8).23(C2xC4)192,784
(C3×Q8).24(C2×C4) = C4○D44Dic3φ: C2×C4/C22C2 ⊆ Out C3×Q896(C3xQ8).24(C2xC4)192,792
(C3×Q8).25(C2×C4) = (C6×D4)⋊9C4φ: C2×C4/C22C2 ⊆ Out C3×Q8484(C3xQ8).25(C2xC4)192,795
(C3×Q8).26(C2×C4) = C6.422- 1+4φ: C2×C4/C22C2 ⊆ Out C3×Q896(C3xQ8).26(C2xC4)192,1371
(C3×Q8).27(C2×C4) = C2×D4.Dic3φ: C2×C4/C22C2 ⊆ Out C3×Q896(C3xQ8).27(C2xC4)192,1377
(C3×Q8).28(C2×C4) = C12.76C24φ: C2×C4/C22C2 ⊆ Out C3×Q8484(C3xQ8).28(C2xC4)192,1378
(C3×Q8).29(C2×C4) = C3×C23.24D4φ: C2×C4/C22C2 ⊆ Out C3×Q896(C3xQ8).29(C2xC4)192,849
(C3×Q8).30(C2×C4) = C3×C23.38D4φ: C2×C4/C22C2 ⊆ Out C3×Q896(C3xQ8).30(C2xC4)192,852
(C3×Q8).31(C2×C4) = C3×C42⋊C22φ: C2×C4/C22C2 ⊆ Out C3×Q8484(C3xQ8).31(C2xC4)192,854
(C3×Q8).32(C2×C4) = C3×C23.32C23φ: trivial image96(C3xQ8).32(C2xC4)192,1408
(C3×Q8).33(C2×C4) = C6×C8○D4φ: trivial image96(C3xQ8).33(C2xC4)192,1456
(C3×Q8).34(C2×C4) = C3×Q8○M4(2)φ: trivial image484(C3xQ8).34(C2xC4)192,1457

׿
×
𝔽