Extensions 1→N→G→Q→1 with N=C2×Q8 and Q=C2×C6

Direct product G=N×Q with N=C2×Q8 and Q=C2×C6
dρLabelID
Q8×C22×C6192Q8xC2^2xC6192,1532

Semidirect products G=N:Q with N=C2×Q8 and Q=C2×C6
extensionφ:Q→Out NdρLabelID
(C2×Q8)⋊(C2×C6) = C2×D4.A4φ: C2×C6/C2C6 ⊆ Out C2×Q832(C2xQ8):(C2xC6)192,1503
(C2×Q8)⋊2(C2×C6) = C3×C22⋊SD16φ: C2×C6/C3C22 ⊆ Out C2×Q848(C2xQ8):2(C2xC6)192,883
(C2×Q8)⋊3(C2×C6) = C3×D4.9D4φ: C2×C6/C3C22 ⊆ Out C2×Q8484(C2xQ8):3(C2xC6)192,888
(C2×Q8)⋊4(C2×C6) = C3×C22.32C24φ: C2×C6/C3C22 ⊆ Out C2×Q848(C2xQ8):4(C2xC6)192,1427
(C2×Q8)⋊5(C2×C6) = C3×C232Q8φ: C2×C6/C3C22 ⊆ Out C2×Q848(C2xQ8):5(C2xC6)192,1432
(C2×Q8)⋊6(C2×C6) = C3×C22.45C24φ: C2×C6/C3C22 ⊆ Out C2×Q848(C2xQ8):6(C2xC6)192,1440
(C2×Q8)⋊7(C2×C6) = C3×C24⋊C22φ: C2×C6/C3C22 ⊆ Out C2×Q848(C2xQ8):7(C2xC6)192,1450
(C2×Q8)⋊8(C2×C6) = C3×D4○SD16φ: C2×C6/C3C22 ⊆ Out C2×Q8484(C2xQ8):8(C2xC6)192,1466
(C2×Q8)⋊9(C2×C6) = C23×SL2(𝔽3)φ: C2×C6/C22C3 ⊆ Out C2×Q864(C2xQ8):9(C2xC6)192,1498
(C2×Q8)⋊10(C2×C6) = C6×C22⋊Q8φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8):10(C2xC6)192,1412
(C2×Q8)⋊11(C2×C6) = C3×C22.19C24φ: C2×C6/C6C2 ⊆ Out C2×Q848(C2xQ8):11(C2xC6)192,1414
(C2×Q8)⋊12(C2×C6) = C6×C4.4D4φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8):12(C2xC6)192,1415
(C2×Q8)⋊13(C2×C6) = C3×C22.29C24φ: C2×C6/C6C2 ⊆ Out C2×Q848(C2xQ8):13(C2xC6)192,1424
(C2×Q8)⋊14(C2×C6) = C3×D45D4φ: C2×C6/C6C2 ⊆ Out C2×Q848(C2xQ8):14(C2xC6)192,1435
(C2×Q8)⋊15(C2×C6) = C2×C6×SD16φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8):15(C2xC6)192,1459
(C2×Q8)⋊16(C2×C6) = C6×C8⋊C22φ: C2×C6/C6C2 ⊆ Out C2×Q848(C2xQ8):16(C2xC6)192,1462
(C2×Q8)⋊17(C2×C6) = C6×C8.C22φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8):17(C2xC6)192,1463
(C2×Q8)⋊18(C2×C6) = C3×D8⋊C22φ: C2×C6/C6C2 ⊆ Out C2×Q8484(C2xQ8):18(C2xC6)192,1464
(C2×Q8)⋊19(C2×C6) = C6×2- 1+4φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8):19(C2xC6)192,1535
(C2×Q8)⋊20(C2×C6) = C3×C2.C25φ: C2×C6/C6C2 ⊆ Out C2×Q8484(C2xQ8):20(C2xC6)192,1536
(C2×Q8)⋊21(C2×C6) = C2×C6×C4○D4φ: trivial image96(C2xQ8):21(C2xC6)192,1533
(C2×Q8)⋊22(C2×C6) = C6×2+ 1+4φ: trivial image48(C2xQ8):22(C2xC6)192,1534

Non-split extensions G=N.Q with N=C2×Q8 and Q=C2×C6
extensionφ:Q→Out NdρLabelID
(C2×Q8).(C2×C6) = 2- 1+43C6φ: C2×C6/C2C6 ⊆ Out C2×Q8324(C2xQ8).(C2xC6)192,1504
(C2×Q8).2(C2×C6) = C3×C42.C4φ: C2×C6/C3C22 ⊆ Out C2×Q8484(C2xQ8).2(C2xC6)192,161
(C2×Q8).3(C2×C6) = C3×C42.3C4φ: C2×C6/C3C22 ⊆ Out C2×Q8484(C2xQ8).3(C2xC6)192,162
(C2×Q8).4(C2×C6) = C3×D4.8D4φ: C2×C6/C3C22 ⊆ Out C2×Q8484(C2xQ8).4(C2xC6)192,887
(C2×Q8).5(C2×C6) = C3×D4.10D4φ: C2×C6/C3C22 ⊆ Out C2×Q8484(C2xQ8).5(C2xC6)192,889
(C2×Q8).6(C2×C6) = C3×D4.D4φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).6(C2xC6)192,894
(C2×Q8).7(C2×C6) = C3×D4.2D4φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).7(C2xC6)192,896
(C2×Q8).8(C2×C6) = C3×C88D4φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).8(C2xC6)192,898
(C2×Q8).9(C2×C6) = C3×C8.18D4φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).9(C2xC6)192,900
(C2×Q8).10(C2×C6) = C3×C8⋊D4φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).10(C2xC6)192,901
(C2×Q8).11(C2×C6) = C3×C8.D4φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).11(C2xC6)192,903
(C2×Q8).12(C2×C6) = C3×D4.3D4φ: C2×C6/C3C22 ⊆ Out C2×Q8484(C2xQ8).12(C2xC6)192,904
(C2×Q8).13(C2×C6) = C3×D4.5D4φ: C2×C6/C3C22 ⊆ Out C2×Q8964(C2xQ8).13(C2xC6)192,906
(C2×Q8).14(C2×C6) = C3×C23.47D4φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).14(C2xC6)192,916
(C2×Q8).15(C2×C6) = C3×C23.48D4φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).15(C2xC6)192,917
(C2×Q8).16(C2×C6) = C3×C23.20D4φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).16(C2xC6)192,918
(C2×Q8).17(C2×C6) = C3×C4.SD16φ: C2×C6/C3C22 ⊆ Out C2×Q8192(C2xQ8).17(C2xC6)192,920
(C2×Q8).18(C2×C6) = C3×C42.78C22φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).18(C2xC6)192,921
(C2×Q8).19(C2×C6) = C3×C42.28C22φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).19(C2xC6)192,922
(C2×Q8).20(C2×C6) = C3×C42.30C22φ: C2×C6/C3C22 ⊆ Out C2×Q8192(C2xQ8).20(C2xC6)192,924
(C2×Q8).21(C2×C6) = C3×C85D4φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).21(C2xC6)192,925
(C2×Q8).22(C2×C6) = C3×C4⋊Q16φ: C2×C6/C3C22 ⊆ Out C2×Q8192(C2xQ8).22(C2xC6)192,927
(C2×Q8).23(C2×C6) = C3×C8.12D4φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).23(C2xC6)192,928
(C2×Q8).24(C2×C6) = C3×C83D4φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).24(C2xC6)192,929
(C2×Q8).25(C2×C6) = C3×C8.2D4φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).25(C2xC6)192,930
(C2×Q8).26(C2×C6) = C3×C22.33C24φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).26(C2xC6)192,1428
(C2×Q8).27(C2×C6) = C3×C22.36C24φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).27(C2xC6)192,1431
(C2×Q8).28(C2×C6) = C3×C23.41C23φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).28(C2xC6)192,1433
(C2×Q8).29(C2×C6) = C3×C22.49C24φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).29(C2xC6)192,1444
(C2×Q8).30(C2×C6) = C3×Q82φ: C2×C6/C3C22 ⊆ Out C2×Q8192(C2xQ8).30(C2xC6)192,1447
(C2×Q8).31(C2×C6) = C3×C22.56C24φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).31(C2xC6)192,1451
(C2×Q8).32(C2×C6) = C3×C22.57C24φ: C2×C6/C3C22 ⊆ Out C2×Q896(C2xQ8).32(C2xC6)192,1452
(C2×Q8).33(C2×C6) = C3×Q8○D8φ: C2×C6/C3C22 ⊆ Out C2×Q8964(C2xQ8).33(C2xC6)192,1467
(C2×Q8).34(C2×C6) = C2×C4×SL2(𝔽3)φ: C2×C6/C22C3 ⊆ Out C2×Q864(C2xQ8).34(C2xC6)192,996
(C2×Q8).35(C2×C6) = C4×C4.A4φ: C2×C6/C22C3 ⊆ Out C2×Q864(C2xQ8).35(C2xC6)192,997
(C2×Q8).36(C2×C6) = (C2×Q8)⋊C12φ: C2×C6/C22C3 ⊆ Out C2×Q832(C2xQ8).36(C2xC6)192,998
(C2×Q8).37(C2×C6) = C4○D4⋊C12φ: C2×C6/C22C3 ⊆ Out C2×Q864(C2xQ8).37(C2xC6)192,999
(C2×Q8).38(C2×C6) = SL2(𝔽3)⋊5D4φ: C2×C6/C22C3 ⊆ Out C2×Q832(C2xQ8).38(C2xC6)192,1003
(C2×Q8).39(C2×C6) = D4×SL2(𝔽3)φ: C2×C6/C22C3 ⊆ Out C2×Q832(C2xQ8).39(C2xC6)192,1004
(C2×Q8).40(C2×C6) = SL2(𝔽3)⋊6D4φ: C2×C6/C22C3 ⊆ Out C2×Q864(C2xQ8).40(C2xC6)192,1005
(C2×Q8).41(C2×C6) = SL2(𝔽3)⋊3Q8φ: C2×C6/C22C3 ⊆ Out C2×Q864(C2xQ8).41(C2xC6)192,1006
(C2×Q8).42(C2×C6) = Q8×SL2(𝔽3)φ: C2×C6/C22C3 ⊆ Out C2×Q864(C2xQ8).42(C2xC6)192,1007
(C2×Q8).43(C2×C6) = C22×C4.A4φ: C2×C6/C22C3 ⊆ Out C2×Q864(C2xQ8).43(C2xC6)192,1500
(C2×Q8).44(C2×C6) = C2×Q8.A4φ: C2×C6/C22C3 ⊆ Out C2×Q848(C2xQ8).44(C2xC6)192,1502
(C2×Q8).45(C2×C6) = C6×C4.10D4φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).45(C2xC6)192,845
(C2×Q8).46(C2×C6) = C3×M4(2).8C22φ: C2×C6/C6C2 ⊆ Out C2×Q8484(C2xQ8).46(C2xC6)192,846
(C2×Q8).47(C2×C6) = C6×Q8⋊C4φ: C2×C6/C6C2 ⊆ Out C2×Q8192(C2xQ8).47(C2xC6)192,848
(C2×Q8).48(C2×C6) = C3×C23.24D4φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).48(C2xC6)192,849
(C2×Q8).49(C2×C6) = C3×C23.36D4φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).49(C2xC6)192,850
(C2×Q8).50(C2×C6) = C3×C23.38D4φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).50(C2xC6)192,852
(C2×Q8).51(C2×C6) = C12×SD16φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).51(C2xC6)192,871
(C2×Q8).52(C2×C6) = C12×Q16φ: C2×C6/C6C2 ⊆ Out C2×Q8192(C2xQ8).52(C2xC6)192,872
(C2×Q8).53(C2×C6) = C3×SD16⋊C4φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).53(C2xC6)192,873
(C2×Q8).54(C2×C6) = C3×Q16⋊C4φ: C2×C6/C6C2 ⊆ Out C2×Q8192(C2xQ8).54(C2xC6)192,874
(C2×Q8).55(C2×C6) = C3×Q8⋊D4φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).55(C2xC6)192,881
(C2×Q8).56(C2×C6) = C3×D4⋊D4φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).56(C2xC6)192,882
(C2×Q8).57(C2×C6) = C3×C22⋊Q16φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).57(C2xC6)192,884
(C2×Q8).58(C2×C6) = C3×D4.7D4φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).58(C2xC6)192,885
(C2×Q8).59(C2×C6) = C3×C4⋊SD16φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).59(C2xC6)192,893
(C2×Q8).60(C2×C6) = C3×C42Q16φ: C2×C6/C6C2 ⊆ Out C2×Q8192(C2xQ8).60(C2xC6)192,895
(C2×Q8).61(C2×C6) = C3×Q8.D4φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).61(C2xC6)192,897
(C2×Q8).62(C2×C6) = C3×Q8⋊Q8φ: C2×C6/C6C2 ⊆ Out C2×Q8192(C2xQ8).62(C2xC6)192,908
(C2×Q8).63(C2×C6) = C3×C4.Q16φ: C2×C6/C6C2 ⊆ Out C2×Q8192(C2xQ8).63(C2xC6)192,910
(C2×Q8).64(C2×C6) = C3×Q8.Q8φ: C2×C6/C6C2 ⊆ Out C2×Q8192(C2xQ8).64(C2xC6)192,912
(C2×Q8).65(C2×C6) = C3×C23.36C23φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).65(C2xC6)192,1418
(C2×Q8).66(C2×C6) = C6×C4⋊Q8φ: C2×C6/C6C2 ⊆ Out C2×Q8192(C2xQ8).66(C2xC6)192,1420
(C2×Q8).67(C2×C6) = C3×C22.26C24φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).67(C2xC6)192,1421
(C2×Q8).68(C2×C6) = C3×C23.37C23φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).68(C2xC6)192,1422
(C2×Q8).69(C2×C6) = C3×C23.38C23φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).69(C2xC6)192,1425
(C2×Q8).70(C2×C6) = C3×C22.31C24φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).70(C2xC6)192,1426
(C2×Q8).71(C2×C6) = C3×C22.35C24φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).71(C2xC6)192,1430
(C2×Q8).72(C2×C6) = C3×D46D4φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).72(C2xC6)192,1436
(C2×Q8).73(C2×C6) = C3×Q85D4φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).73(C2xC6)192,1437
(C2×Q8).74(C2×C6) = C3×D4×Q8φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).74(C2xC6)192,1438
(C2×Q8).75(C2×C6) = C3×C22.46C24φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).75(C2xC6)192,1441
(C2×Q8).76(C2×C6) = C3×D43Q8φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).76(C2xC6)192,1443
(C2×Q8).77(C2×C6) = C3×C22.50C24φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).77(C2xC6)192,1445
(C2×Q8).78(C2×C6) = C3×Q83Q8φ: C2×C6/C6C2 ⊆ Out C2×Q8192(C2xQ8).78(C2xC6)192,1446
(C2×Q8).79(C2×C6) = C3×C22.53C24φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).79(C2xC6)192,1448
(C2×Q8).80(C2×C6) = C2×C6×Q16φ: C2×C6/C6C2 ⊆ Out C2×Q8192(C2xQ8).80(C2xC6)192,1460
(C2×Q8).81(C2×C6) = C6×C4○D8φ: C2×C6/C6C2 ⊆ Out C2×Q896(C2xQ8).81(C2xC6)192,1461
(C2×Q8).82(C2×C6) = Q8×C2×C12φ: trivial image192(C2xQ8).82(C2xC6)192,1405
(C2×Q8).83(C2×C6) = C12×C4○D4φ: trivial image96(C2xQ8).83(C2xC6)192,1406
(C2×Q8).84(C2×C6) = C3×C23.32C23φ: trivial image96(C2xQ8).84(C2xC6)192,1408
(C2×Q8).85(C2×C6) = C3×C23.33C23φ: trivial image96(C2xQ8).85(C2xC6)192,1409
(C2×Q8).86(C2×C6) = C3×Q86D4φ: trivial image96(C2xQ8).86(C2xC6)192,1439

׿
×
𝔽