extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Q8)⋊(C2×C6) = C2×D4.A4 | φ: C2×C6/C2 → C6 ⊆ Out C2×Q8 | 32 | | (C2xQ8):(C2xC6) | 192,1503 |
(C2×Q8)⋊2(C2×C6) = C3×C22⋊SD16 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 48 | | (C2xQ8):2(C2xC6) | 192,883 |
(C2×Q8)⋊3(C2×C6) = C3×D4.9D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8):3(C2xC6) | 192,888 |
(C2×Q8)⋊4(C2×C6) = C3×C22.32C24 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 48 | | (C2xQ8):4(C2xC6) | 192,1427 |
(C2×Q8)⋊5(C2×C6) = C3×C23⋊2Q8 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 48 | | (C2xQ8):5(C2xC6) | 192,1432 |
(C2×Q8)⋊6(C2×C6) = C3×C22.45C24 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 48 | | (C2xQ8):6(C2xC6) | 192,1440 |
(C2×Q8)⋊7(C2×C6) = C3×C24⋊C22 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 48 | | (C2xQ8):7(C2xC6) | 192,1450 |
(C2×Q8)⋊8(C2×C6) = C3×D4○SD16 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8):8(C2xC6) | 192,1466 |
(C2×Q8)⋊9(C2×C6) = C23×SL2(𝔽3) | φ: C2×C6/C22 → C3 ⊆ Out C2×Q8 | 64 | | (C2xQ8):9(C2xC6) | 192,1498 |
(C2×Q8)⋊10(C2×C6) = C6×C22⋊Q8 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8):10(C2xC6) | 192,1412 |
(C2×Q8)⋊11(C2×C6) = C3×C22.19C24 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):11(C2xC6) | 192,1414 |
(C2×Q8)⋊12(C2×C6) = C6×C4.4D4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8):12(C2xC6) | 192,1415 |
(C2×Q8)⋊13(C2×C6) = C3×C22.29C24 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):13(C2xC6) | 192,1424 |
(C2×Q8)⋊14(C2×C6) = C3×D4⋊5D4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):14(C2xC6) | 192,1435 |
(C2×Q8)⋊15(C2×C6) = C2×C6×SD16 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8):15(C2xC6) | 192,1459 |
(C2×Q8)⋊16(C2×C6) = C6×C8⋊C22 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):16(C2xC6) | 192,1462 |
(C2×Q8)⋊17(C2×C6) = C6×C8.C22 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8):17(C2xC6) | 192,1463 |
(C2×Q8)⋊18(C2×C6) = C3×D8⋊C22 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8):18(C2xC6) | 192,1464 |
(C2×Q8)⋊19(C2×C6) = C6×2- 1+4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8):19(C2xC6) | 192,1535 |
(C2×Q8)⋊20(C2×C6) = C3×C2.C25 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8):20(C2xC6) | 192,1536 |
(C2×Q8)⋊21(C2×C6) = C2×C6×C4○D4 | φ: trivial image | 96 | | (C2xQ8):21(C2xC6) | 192,1533 |
(C2×Q8)⋊22(C2×C6) = C6×2+ 1+4 | φ: trivial image | 48 | | (C2xQ8):22(C2xC6) | 192,1534 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Q8).(C2×C6) = 2- 1+4⋊3C6 | φ: C2×C6/C2 → C6 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).(C2xC6) | 192,1504 |
(C2×Q8).2(C2×C6) = C3×C42.C4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8).2(C2xC6) | 192,161 |
(C2×Q8).3(C2×C6) = C3×C42.3C4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8).3(C2xC6) | 192,162 |
(C2×Q8).4(C2×C6) = C3×D4.8D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8).4(C2xC6) | 192,887 |
(C2×Q8).5(C2×C6) = C3×D4.10D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8).5(C2xC6) | 192,889 |
(C2×Q8).6(C2×C6) = C3×D4.D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).6(C2xC6) | 192,894 |
(C2×Q8).7(C2×C6) = C3×D4.2D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).7(C2xC6) | 192,896 |
(C2×Q8).8(C2×C6) = C3×C8⋊8D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).8(C2xC6) | 192,898 |
(C2×Q8).9(C2×C6) = C3×C8.18D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).9(C2xC6) | 192,900 |
(C2×Q8).10(C2×C6) = C3×C8⋊D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).10(C2xC6) | 192,901 |
(C2×Q8).11(C2×C6) = C3×C8.D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).11(C2xC6) | 192,903 |
(C2×Q8).12(C2×C6) = C3×D4.3D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8).12(C2xC6) | 192,904 |
(C2×Q8).13(C2×C6) = C3×D4.5D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | 4 | (C2xQ8).13(C2xC6) | 192,906 |
(C2×Q8).14(C2×C6) = C3×C23.47D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).14(C2xC6) | 192,916 |
(C2×Q8).15(C2×C6) = C3×C23.48D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).15(C2xC6) | 192,917 |
(C2×Q8).16(C2×C6) = C3×C23.20D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).16(C2xC6) | 192,918 |
(C2×Q8).17(C2×C6) = C3×C4.SD16 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 192 | | (C2xQ8).17(C2xC6) | 192,920 |
(C2×Q8).18(C2×C6) = C3×C42.78C22 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).18(C2xC6) | 192,921 |
(C2×Q8).19(C2×C6) = C3×C42.28C22 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).19(C2xC6) | 192,922 |
(C2×Q8).20(C2×C6) = C3×C42.30C22 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 192 | | (C2xQ8).20(C2xC6) | 192,924 |
(C2×Q8).21(C2×C6) = C3×C8⋊5D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).21(C2xC6) | 192,925 |
(C2×Q8).22(C2×C6) = C3×C4⋊Q16 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 192 | | (C2xQ8).22(C2xC6) | 192,927 |
(C2×Q8).23(C2×C6) = C3×C8.12D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).23(C2xC6) | 192,928 |
(C2×Q8).24(C2×C6) = C3×C8⋊3D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).24(C2xC6) | 192,929 |
(C2×Q8).25(C2×C6) = C3×C8.2D4 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).25(C2xC6) | 192,930 |
(C2×Q8).26(C2×C6) = C3×C22.33C24 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).26(C2xC6) | 192,1428 |
(C2×Q8).27(C2×C6) = C3×C22.36C24 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).27(C2xC6) | 192,1431 |
(C2×Q8).28(C2×C6) = C3×C23.41C23 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).28(C2xC6) | 192,1433 |
(C2×Q8).29(C2×C6) = C3×C22.49C24 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).29(C2xC6) | 192,1444 |
(C2×Q8).30(C2×C6) = C3×Q82 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 192 | | (C2xQ8).30(C2xC6) | 192,1447 |
(C2×Q8).31(C2×C6) = C3×C22.56C24 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).31(C2xC6) | 192,1451 |
(C2×Q8).32(C2×C6) = C3×C22.57C24 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).32(C2xC6) | 192,1452 |
(C2×Q8).33(C2×C6) = C3×Q8○D8 | φ: C2×C6/C3 → C22 ⊆ Out C2×Q8 | 96 | 4 | (C2xQ8).33(C2xC6) | 192,1467 |
(C2×Q8).34(C2×C6) = C2×C4×SL2(𝔽3) | φ: C2×C6/C22 → C3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).34(C2xC6) | 192,996 |
(C2×Q8).35(C2×C6) = C4×C4.A4 | φ: C2×C6/C22 → C3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).35(C2xC6) | 192,997 |
(C2×Q8).36(C2×C6) = (C2×Q8)⋊C12 | φ: C2×C6/C22 → C3 ⊆ Out C2×Q8 | 32 | | (C2xQ8).36(C2xC6) | 192,998 |
(C2×Q8).37(C2×C6) = C4○D4⋊C12 | φ: C2×C6/C22 → C3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).37(C2xC6) | 192,999 |
(C2×Q8).38(C2×C6) = SL2(𝔽3)⋊5D4 | φ: C2×C6/C22 → C3 ⊆ Out C2×Q8 | 32 | | (C2xQ8).38(C2xC6) | 192,1003 |
(C2×Q8).39(C2×C6) = D4×SL2(𝔽3) | φ: C2×C6/C22 → C3 ⊆ Out C2×Q8 | 32 | | (C2xQ8).39(C2xC6) | 192,1004 |
(C2×Q8).40(C2×C6) = SL2(𝔽3)⋊6D4 | φ: C2×C6/C22 → C3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).40(C2xC6) | 192,1005 |
(C2×Q8).41(C2×C6) = SL2(𝔽3)⋊3Q8 | φ: C2×C6/C22 → C3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).41(C2xC6) | 192,1006 |
(C2×Q8).42(C2×C6) = Q8×SL2(𝔽3) | φ: C2×C6/C22 → C3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).42(C2xC6) | 192,1007 |
(C2×Q8).43(C2×C6) = C22×C4.A4 | φ: C2×C6/C22 → C3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).43(C2xC6) | 192,1500 |
(C2×Q8).44(C2×C6) = C2×Q8.A4 | φ: C2×C6/C22 → C3 ⊆ Out C2×Q8 | 48 | | (C2xQ8).44(C2xC6) | 192,1502 |
(C2×Q8).45(C2×C6) = C6×C4.10D4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).45(C2xC6) | 192,845 |
(C2×Q8).46(C2×C6) = C3×M4(2).8C22 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8).46(C2xC6) | 192,846 |
(C2×Q8).47(C2×C6) = C6×Q8⋊C4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).47(C2xC6) | 192,848 |
(C2×Q8).48(C2×C6) = C3×C23.24D4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).48(C2xC6) | 192,849 |
(C2×Q8).49(C2×C6) = C3×C23.36D4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).49(C2xC6) | 192,850 |
(C2×Q8).50(C2×C6) = C3×C23.38D4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).50(C2xC6) | 192,852 |
(C2×Q8).51(C2×C6) = C12×SD16 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).51(C2xC6) | 192,871 |
(C2×Q8).52(C2×C6) = C12×Q16 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).52(C2xC6) | 192,872 |
(C2×Q8).53(C2×C6) = C3×SD16⋊C4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).53(C2xC6) | 192,873 |
(C2×Q8).54(C2×C6) = C3×Q16⋊C4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).54(C2xC6) | 192,874 |
(C2×Q8).55(C2×C6) = C3×Q8⋊D4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).55(C2xC6) | 192,881 |
(C2×Q8).56(C2×C6) = C3×D4⋊D4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).56(C2xC6) | 192,882 |
(C2×Q8).57(C2×C6) = C3×C22⋊Q16 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).57(C2xC6) | 192,884 |
(C2×Q8).58(C2×C6) = C3×D4.7D4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).58(C2xC6) | 192,885 |
(C2×Q8).59(C2×C6) = C3×C4⋊SD16 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).59(C2xC6) | 192,893 |
(C2×Q8).60(C2×C6) = C3×C4⋊2Q16 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).60(C2xC6) | 192,895 |
(C2×Q8).61(C2×C6) = C3×Q8.D4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).61(C2xC6) | 192,897 |
(C2×Q8).62(C2×C6) = C3×Q8⋊Q8 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).62(C2xC6) | 192,908 |
(C2×Q8).63(C2×C6) = C3×C4.Q16 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).63(C2xC6) | 192,910 |
(C2×Q8).64(C2×C6) = C3×Q8.Q8 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).64(C2xC6) | 192,912 |
(C2×Q8).65(C2×C6) = C3×C23.36C23 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).65(C2xC6) | 192,1418 |
(C2×Q8).66(C2×C6) = C6×C4⋊Q8 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).66(C2xC6) | 192,1420 |
(C2×Q8).67(C2×C6) = C3×C22.26C24 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).67(C2xC6) | 192,1421 |
(C2×Q8).68(C2×C6) = C3×C23.37C23 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).68(C2xC6) | 192,1422 |
(C2×Q8).69(C2×C6) = C3×C23.38C23 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).69(C2xC6) | 192,1425 |
(C2×Q8).70(C2×C6) = C3×C22.31C24 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).70(C2xC6) | 192,1426 |
(C2×Q8).71(C2×C6) = C3×C22.35C24 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).71(C2xC6) | 192,1430 |
(C2×Q8).72(C2×C6) = C3×D4⋊6D4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).72(C2xC6) | 192,1436 |
(C2×Q8).73(C2×C6) = C3×Q8⋊5D4 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).73(C2xC6) | 192,1437 |
(C2×Q8).74(C2×C6) = C3×D4×Q8 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).74(C2xC6) | 192,1438 |
(C2×Q8).75(C2×C6) = C3×C22.46C24 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).75(C2xC6) | 192,1441 |
(C2×Q8).76(C2×C6) = C3×D4⋊3Q8 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).76(C2xC6) | 192,1443 |
(C2×Q8).77(C2×C6) = C3×C22.50C24 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).77(C2xC6) | 192,1445 |
(C2×Q8).78(C2×C6) = C3×Q8⋊3Q8 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).78(C2xC6) | 192,1446 |
(C2×Q8).79(C2×C6) = C3×C22.53C24 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).79(C2xC6) | 192,1448 |
(C2×Q8).80(C2×C6) = C2×C6×Q16 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).80(C2xC6) | 192,1460 |
(C2×Q8).81(C2×C6) = C6×C4○D8 | φ: C2×C6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).81(C2xC6) | 192,1461 |
(C2×Q8).82(C2×C6) = Q8×C2×C12 | φ: trivial image | 192 | | (C2xQ8).82(C2xC6) | 192,1405 |
(C2×Q8).83(C2×C6) = C12×C4○D4 | φ: trivial image | 96 | | (C2xQ8).83(C2xC6) | 192,1406 |
(C2×Q8).84(C2×C6) = C3×C23.32C23 | φ: trivial image | 96 | | (C2xQ8).84(C2xC6) | 192,1408 |
(C2×Q8).85(C2×C6) = C3×C23.33C23 | φ: trivial image | 96 | | (C2xQ8).85(C2xC6) | 192,1409 |
(C2×Q8).86(C2×C6) = C3×Q8⋊6D4 | φ: trivial image | 96 | | (C2xQ8).86(C2xC6) | 192,1439 |