Extensions 1→N→G→Q→1 with N=C8○D12 and Q=C2

Direct product G=N×Q with N=C8○D12 and Q=C2
dρLabelID
C2×C8○D1296C2xC8oD12192,1297

Semidirect products G=N:Q with N=C8○D12 and Q=C2
extensionφ:Q→Out NdρLabelID
C8○D121C2 = C24.23D4φ: C2/C1C2 ⊆ Out C8○D12484C8oD12:1C2192,719
C8○D122C2 = D813D6φ: C2/C1C2 ⊆ Out C8○D12484C8oD12:2C2192,1316
C8○D123C2 = D12.30D4φ: C2/C1C2 ⊆ Out C8○D12964C8oD12:3C2192,1325
C8○D124C2 = C24.44D4φ: C2/C1C2 ⊆ Out C8○D12484C8oD12:4C2192,736
C8○D125C2 = SD1613D6φ: C2/C1C2 ⊆ Out C8○D12484C8oD12:5C2192,1321
C8○D126C2 = C24.19D4φ: C2/C1C2 ⊆ Out C8○D12484+C8oD12:6C2192,456
C8○D127C2 = D815D6φ: C2/C1C2 ⊆ Out C8○D12484+C8oD12:7C2192,1328
C8○D128C2 = D8.10D6φ: C2/C1C2 ⊆ Out C8○D12964-C8oD12:8C2192,1330
C8○D129C2 = C24.42D4φ: C2/C1C2 ⊆ Out C8○D12484C8oD12:9C2192,457
C8○D1210C2 = D811D6φ: C2/C1C2 ⊆ Out C8○D12484C8oD12:10C2192,1329
C8○D1211C2 = D2411C4φ: C2/C1C2 ⊆ Out C8○D12482C8oD12:11C2192,259
C8○D1212C2 = D244C4φ: C2/C1C2 ⊆ Out C8○D12484C8oD12:12C2192,276
C8○D1213C2 = C24.100D4φ: C2/C1C2 ⊆ Out C8○D12484C8oD12:13C2192,703
C8○D1214C2 = C24.54D4φ: C2/C1C2 ⊆ Out C8○D12484C8oD12:14C2192,704
C8○D1215C2 = M4(2)⋊26D6φ: C2/C1C2 ⊆ Out C8○D12484C8oD12:15C2192,1304
C8○D1216C2 = S3×C8○D4φ: C2/C1C2 ⊆ Out C8○D12484C8oD12:16C2192,1308
C8○D1217C2 = M4(2)⋊28D6φ: C2/C1C2 ⊆ Out C8○D12484C8oD12:17C2192,1309

Non-split extensions G=N.Q with N=C8○D12 and Q=C2
extensionφ:Q→Out NdρLabelID
C8○D12.1C2 = C24.29D4φ: C2/C1C2 ⊆ Out C8○D12964C8oD12.1C2192,751
C8○D12.2C2 = C24.18D4φ: C2/C1C2 ⊆ Out C8○D12964-C8oD12.2C2192,455
C8○D12.3C2 = D12.C8φ: C2/C1C2 ⊆ Out C8○D12962C8oD12.3C2192,67
C8○D12.4C2 = Dic6.C8φ: C2/C1C2 ⊆ Out C8○D12964C8oD12.4C2192,74
C8○D12.5C2 = C16.12D6φ: C2/C1C2 ⊆ Out C8○D12964C8oD12.5C2192,466
C8○D12.6C2 = D12.4C8φ: trivial image962C8oD12.6C2192,460

׿
×
𝔽