metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.42D4, C8.24D12, D12.22D4, Dic6.22D4, M4(2).11D6, C8○D12⋊9C2, (C2×C8).72D6, C8.C4⋊7S3, C4.58(C2×D12), C8⋊D6.2C2, C4.137(S3×D4), C12.138(C2×D4), C8.D6⋊10C2, C3⋊3(D4.3D4), C12.46D4⋊4C2, C12.47D4⋊4C2, C6.51(C4⋊D4), C2.24(C12⋊D4), (C2×C24).155C22, (C2×C12).314C23, C4○D12.41C22, (C2×D12).89C22, C22.8(Q8⋊3S3), (C2×Dic6).95C22, (C3×M4(2)).8C22, C4.Dic3.39C22, (C2×C24⋊C2)⋊26C2, (C3×C8.C4)⋊8C2, (C2×C6).5(C4○D4), (C2×C4).115(C22×S3), SmallGroup(192,457)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.42D4
G = < a,b,c | a8=1, b12=c2=a4, bab-1=cac-1=a3, cbc-1=b11 >
Subgroups: 352 in 104 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, D6, C2×C6, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C4○D4, C3⋊C8, C24, C24, Dic6, Dic6, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C4.D4, C4.10D4, C8.C4, C8○D4, C2×SD16, C8⋊C22, C8.C22, S3×C8, C8⋊S3, C24⋊C2, D24, Dic12, C4.Dic3, C2×C24, C3×M4(2), C2×Dic6, C2×D12, C4○D12, D4.3D4, C12.46D4, C12.47D4, C3×C8.C4, C8○D12, C2×C24⋊C2, C8⋊D6, C8.D6, C24.42D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D12, C22×S3, C4⋊D4, C2×D12, S3×D4, Q8⋊3S3, D4.3D4, C12⋊D4, C24.42D4
Character table of C24.42D4
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 12A | 12B | 12C | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 2 | 12 | 24 | 2 | 2 | 2 | 12 | 24 | 2 | 4 | 2 | 2 | 4 | 8 | 8 | 12 | 12 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | -2 | 2 | 0 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ16 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ17 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | -1 | 1 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | √3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ18 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | -1 | 1 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -√3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ19 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | -1 | 1 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ20 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | -1 | 1 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ21 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | 4 | -4 | 0 | 0 | -2 | 4 | -4 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ24 | 4 | 4 | 4 | 0 | 0 | -2 | -4 | -4 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊3S3, Schur index 2 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
ρ27 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | -√-2 | √-2 | √-6 | -√-6 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | √-2 | -√-2 | √-6 | -√-6 | 0 | 0 | 0 | 0 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | √-2 | -√-2 | -√-6 | √-6 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | -√-2 | √-2 | -√-6 | √-6 | 0 | 0 | 0 | 0 | complex faithful |
(1 43 7 25 13 31 19 37)(2 26 20 44 14 38 8 32)(3 45 9 27 15 33 21 39)(4 28 22 46 16 40 10 34)(5 47 11 29 17 35 23 41)(6 30 24 48 18 42 12 36)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 33 13 45)(2 44 14 32)(3 31 15 43)(4 42 16 30)(5 29 17 41)(6 40 18 28)(7 27 19 39)(8 38 20 26)(9 25 21 37)(10 36 22 48)(11 47 23 35)(12 34 24 46)
G:=sub<Sym(48)| (1,43,7,25,13,31,19,37)(2,26,20,44,14,38,8,32)(3,45,9,27,15,33,21,39)(4,28,22,46,16,40,10,34)(5,47,11,29,17,35,23,41)(6,30,24,48,18,42,12,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33,13,45)(2,44,14,32)(3,31,15,43)(4,42,16,30)(5,29,17,41)(6,40,18,28)(7,27,19,39)(8,38,20,26)(9,25,21,37)(10,36,22,48)(11,47,23,35)(12,34,24,46)>;
G:=Group( (1,43,7,25,13,31,19,37)(2,26,20,44,14,38,8,32)(3,45,9,27,15,33,21,39)(4,28,22,46,16,40,10,34)(5,47,11,29,17,35,23,41)(6,30,24,48,18,42,12,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33,13,45)(2,44,14,32)(3,31,15,43)(4,42,16,30)(5,29,17,41)(6,40,18,28)(7,27,19,39)(8,38,20,26)(9,25,21,37)(10,36,22,48)(11,47,23,35)(12,34,24,46) );
G=PermutationGroup([[(1,43,7,25,13,31,19,37),(2,26,20,44,14,38,8,32),(3,45,9,27,15,33,21,39),(4,28,22,46,16,40,10,34),(5,47,11,29,17,35,23,41),(6,30,24,48,18,42,12,36)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33,13,45),(2,44,14,32),(3,31,15,43),(4,42,16,30),(5,29,17,41),(6,40,18,28),(7,27,19,39),(8,38,20,26),(9,25,21,37),(10,36,22,48),(11,47,23,35),(12,34,24,46)]])
Matrix representation of C24.42D4 ►in GL4(𝔽73) generated by
48 | 62 | 53 | 0 |
11 | 37 | 53 | 53 |
0 | 0 | 48 | 11 |
0 | 0 | 62 | 37 |
14 | 66 | 11 | 10 |
7 | 7 | 1 | 11 |
0 | 14 | 66 | 7 |
59 | 0 | 66 | 59 |
25 | 11 | 67 | 61 |
36 | 48 | 61 | 67 |
0 | 0 | 25 | 62 |
0 | 0 | 37 | 48 |
G:=sub<GL(4,GF(73))| [48,11,0,0,62,37,0,0,53,53,48,62,0,53,11,37],[14,7,0,59,66,7,14,0,11,1,66,66,10,11,7,59],[25,36,0,0,11,48,0,0,67,61,25,37,61,67,62,48] >;
C24.42D4 in GAP, Magma, Sage, TeX
C_{24}._{42}D_4
% in TeX
G:=Group("C24.42D4");
// GroupNames label
G:=SmallGroup(192,457);
// by ID
G=gap.SmallGroup(192,457);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,254,555,58,1123,136,438,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^8=1,b^12=c^2=a^4,b*a*b^-1=c*a*c^-1=a^3,c*b*c^-1=b^11>;
// generators/relations
Export