Copied to
clipboard

G = C24.18D4order 192 = 26·3

18th non-split extension by C24 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.18D4, C8.20D12, D12.20D4, Dic6.20D4, M4(2).9D6, (C2×C8).70D6, C8.C45S3, C8○D12.2C2, C4.135(S3×D4), C4.56(C2×D12), C12.136(C2×D4), C32(D4.5D4), C8.D6.2C2, (C2×Dic12)⋊21C2, C12.47D43C2, C6.49(C4⋊D4), C2.22(C12⋊D4), (C2×C24).102C22, (C2×C12).312C23, C4○D12.39C22, C22.6(Q83S3), (C2×Dic6).94C22, (C3×M4(2)).6C22, C4.Dic3.37C22, (C3×C8.C4)⋊6C2, (C2×C6).3(C4○D4), (C2×C4).113(C22×S3), SmallGroup(192,455)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C24.18D4
C1C3C6C12C2×C12C4○D12C8○D12 — C24.18D4
C3C6C2×C12 — C24.18D4
C1C2C2×C4C8.C4

Generators and relations for C24.18D4
 G = < a,b,c | a24=1, b4=c2=a12, bab-1=a7, cac-1=a-1, cbc-1=b3 >

Subgroups: 288 in 100 conjugacy classes, 37 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, Q8, Dic3, C12, D6, C2×C6, C2×C8, C2×C8, M4(2), M4(2), SD16, Q16, C2×Q8, C4○D4, C3⋊C8, C24, C24, Dic6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C4.10D4, C8.C4, C8○D4, C2×Q16, C8.C22, S3×C8, C8⋊S3, C24⋊C2, Dic12, C4.Dic3, C2×C24, C3×M4(2), C2×Dic6, C4○D12, D4.5D4, C12.47D4, C3×C8.C4, C8○D12, C2×Dic12, C8.D6, C24.18D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D12, C22×S3, C4⋊D4, C2×D12, S3×D4, Q83S3, D4.5D4, C12⋊D4, C24.18D4

Character table of C24.18D4

 class 12A2B2C34A4B4C4D4E6A6B8A8B8C8D8E8F8G12A12B12C24A24B24C24D24E24F24G24H
 size 112122221224242422488121222444448888
ρ1111111111111111111111111111111    trivial
ρ2111-1111-11111111-1-1-1-11111111-1-1-1-1    linear of order 2
ρ311111111-1-111111-1-1111111111-1-1-1-1    linear of order 2
ρ4111-1111-1-1-11111111-1-111111111111    linear of order 2
ρ5111-1111-11-111-1-1-1-1111111-1-1-1-111-1-1    linear of order 2
ρ6111111111-111-1-1-11-1-1-1111-1-1-1-1-1-111    linear of order 2
ρ7111-1111-1-1111-1-1-11-111111-1-1-1-1-1-111    linear of order 2
ρ811111111-1111-1-1-1-11-1-1111-1-1-1-111-1-1    linear of order 2
ρ92220-122000-1-12222200-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1022-2-222-22002-2000000022-200000000    orthogonal lifted from D4
ρ112220-122000-1-1-2-2-22-200-1-1-1111111-1-1    orthogonal lifted from D6
ρ1222-202-220002-222-20000-2-2222-2-20000    orthogonal lifted from D4
ρ132220-122000-1-1-2-2-2-2200-1-1-11111-1-111    orthogonal lifted from D6
ρ1422-2222-2-2002-2000000022-200000000    orthogonal lifted from D4
ρ152220-122000-1-1222-2-200-1-1-1-1-1-1-11111    orthogonal lifted from D6
ρ1622-202-220002-2-2-220000-2-22-2-2220000    orthogonal lifted from D4
ρ1722-20-1-22000-1122-2000011-1-1-1113-3-33    orthogonal lifted from D12
ρ1822-20-1-22000-1122-2000011-1-1-111-333-3    orthogonal lifted from D12
ρ1922-20-1-22000-11-2-22000011-111-1-13-33-3    orthogonal lifted from D12
ρ2022-20-1-22000-11-2-22000011-111-1-1-33-33    orthogonal lifted from D12
ρ2122202-2-20002200000-2i2i-2-2-200000000    complex lifted from C4○D4
ρ2222202-2-200022000002i-2i-2-2-200000000    complex lifted from C4○D4
ρ234440-2-4-4000-2-2000000022200000000    orthogonal lifted from Q83S3, Schur index 2
ρ2444-40-24-4000-220000000-2-2200000000    orthogonal lifted from S3×D4
ρ254-400400000-40-22220000000022-22000000    symplectic lifted from D4.5D4, Schur index 2
ρ264-400400000-4022-2200000000-2222000000    symplectic lifted from D4.5D4, Schur index 2
ρ274-400-20000020-222200000-23230-22-660000    symplectic faithful, Schur index 2
ρ284-400-2000002022-220000023-2302-2-660000    symplectic faithful, Schur index 2
ρ294-400-2000002022-2200000-232302-26-60000    symplectic faithful, Schur index 2
ρ304-400-20000020-22220000023-230-226-60000    symplectic faithful, Schur index 2

Smallest permutation representation of C24.18D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 53 81 45 13 65 93 33)(2 60 82 28 14 72 94 40)(3 67 83 35 15 55 95 47)(4 50 84 42 16 62 96 30)(5 57 85 25 17 69 73 37)(6 64 86 32 18 52 74 44)(7 71 87 39 19 59 75 27)(8 54 88 46 20 66 76 34)(9 61 89 29 21 49 77 41)(10 68 90 36 22 56 78 48)(11 51 91 43 23 63 79 31)(12 58 92 26 24 70 80 38)
(1 45 13 33)(2 44 14 32)(3 43 15 31)(4 42 16 30)(5 41 17 29)(6 40 18 28)(7 39 19 27)(8 38 20 26)(9 37 21 25)(10 36 22 48)(11 35 23 47)(12 34 24 46)(49 73 61 85)(50 96 62 84)(51 95 63 83)(52 94 64 82)(53 93 65 81)(54 92 66 80)(55 91 67 79)(56 90 68 78)(57 89 69 77)(58 88 70 76)(59 87 71 75)(60 86 72 74)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,53,81,45,13,65,93,33)(2,60,82,28,14,72,94,40)(3,67,83,35,15,55,95,47)(4,50,84,42,16,62,96,30)(5,57,85,25,17,69,73,37)(6,64,86,32,18,52,74,44)(7,71,87,39,19,59,75,27)(8,54,88,46,20,66,76,34)(9,61,89,29,21,49,77,41)(10,68,90,36,22,56,78,48)(11,51,91,43,23,63,79,31)(12,58,92,26,24,70,80,38), (1,45,13,33)(2,44,14,32)(3,43,15,31)(4,42,16,30)(5,41,17,29)(6,40,18,28)(7,39,19,27)(8,38,20,26)(9,37,21,25)(10,36,22,48)(11,35,23,47)(12,34,24,46)(49,73,61,85)(50,96,62,84)(51,95,63,83)(52,94,64,82)(53,93,65,81)(54,92,66,80)(55,91,67,79)(56,90,68,78)(57,89,69,77)(58,88,70,76)(59,87,71,75)(60,86,72,74)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,53,81,45,13,65,93,33)(2,60,82,28,14,72,94,40)(3,67,83,35,15,55,95,47)(4,50,84,42,16,62,96,30)(5,57,85,25,17,69,73,37)(6,64,86,32,18,52,74,44)(7,71,87,39,19,59,75,27)(8,54,88,46,20,66,76,34)(9,61,89,29,21,49,77,41)(10,68,90,36,22,56,78,48)(11,51,91,43,23,63,79,31)(12,58,92,26,24,70,80,38), (1,45,13,33)(2,44,14,32)(3,43,15,31)(4,42,16,30)(5,41,17,29)(6,40,18,28)(7,39,19,27)(8,38,20,26)(9,37,21,25)(10,36,22,48)(11,35,23,47)(12,34,24,46)(49,73,61,85)(50,96,62,84)(51,95,63,83)(52,94,64,82)(53,93,65,81)(54,92,66,80)(55,91,67,79)(56,90,68,78)(57,89,69,77)(58,88,70,76)(59,87,71,75)(60,86,72,74) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,53,81,45,13,65,93,33),(2,60,82,28,14,72,94,40),(3,67,83,35,15,55,95,47),(4,50,84,42,16,62,96,30),(5,57,85,25,17,69,73,37),(6,64,86,32,18,52,74,44),(7,71,87,39,19,59,75,27),(8,54,88,46,20,66,76,34),(9,61,89,29,21,49,77,41),(10,68,90,36,22,56,78,48),(11,51,91,43,23,63,79,31),(12,58,92,26,24,70,80,38)], [(1,45,13,33),(2,44,14,32),(3,43,15,31),(4,42,16,30),(5,41,17,29),(6,40,18,28),(7,39,19,27),(8,38,20,26),(9,37,21,25),(10,36,22,48),(11,35,23,47),(12,34,24,46),(49,73,61,85),(50,96,62,84),(51,95,63,83),(52,94,64,82),(53,93,65,81),(54,92,66,80),(55,91,67,79),(56,90,68,78),(57,89,69,77),(58,88,70,76),(59,87,71,75),(60,86,72,74)]])

Matrix representation of C24.18D4 in GL4(𝔽73) generated by

016057
57161657
016016
57165716
,
14126514
6126596
65145961
5961247
,
12141465
2661659
14656159
6594712
G:=sub<GL(4,GF(73))| [0,57,0,57,16,16,16,16,0,16,0,57,57,57,16,16],[14,61,65,59,12,26,14,6,65,59,59,12,14,6,61,47],[12,26,14,6,14,61,65,59,14,6,61,47,65,59,59,12] >;

C24.18D4 in GAP, Magma, Sage, TeX

C_{24}._{18}D_4
% in TeX

G:=Group("C24.18D4");
// GroupNames label

G:=SmallGroup(192,455);
// by ID

G=gap.SmallGroup(192,455);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,254,219,58,1123,136,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=1,b^4=c^2=a^12,b*a*b^-1=a^7,c*a*c^-1=a^-1,c*b*c^-1=b^3>;
// generators/relations

Export

Character table of C24.18D4 in TeX

׿
×
𝔽