metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.19D4, C8.21D12, D12.21D4, Dic6.21D4, M4(2).10D6, C8○D12⋊6C2, (C2×C8).71D6, (C2×D24)⋊21C2, C8⋊D6⋊10C2, C8.C4⋊6S3, C4.136(S3×D4), C4.57(C2×D12), C12.137(C2×D4), C3⋊2(D4.4D4), C12.46D4⋊3C2, C6.50(C4⋊D4), C2.23(C12⋊D4), (C2×C24).103C22, (C2×C12).313C23, C4○D12.40C22, (C2×D12).88C22, C22.7(Q8⋊3S3), (C3×M4(2)).7C22, C4.Dic3.38C22, (C3×C8.C4)⋊7C2, (C2×C6).4(C4○D4), (C2×C4).114(C22×S3), SmallGroup(192,456)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.19D4
G = < a,b,c | a24=c2=1, b4=a12, bab-1=a7, cac=a-1, cbc=a12b3 >
Subgroups: 416 in 108 conjugacy classes, 37 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, D6, C2×C6, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, C2×D4, C4○D4, C3⋊C8, C24, C24, Dic6, C4×S3, D12, D12, C3⋊D4, C2×C12, C22×S3, C4.D4, C8.C4, C8○D4, C2×D8, C8⋊C22, S3×C8, C8⋊S3, C24⋊C2, D24, C4.Dic3, C2×C24, C3×M4(2), C2×D12, C4○D12, D4.4D4, C12.46D4, C3×C8.C4, C8○D12, C2×D24, C8⋊D6, C24.19D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D12, C22×S3, C4⋊D4, C2×D12, S3×D4, Q8⋊3S3, D4.4D4, C12⋊D4, C24.19D4
Character table of C24.19D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 6A | 6B | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 12A | 12B | 12C | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 2 | 12 | 24 | 24 | 2 | 2 | 2 | 12 | 2 | 4 | 2 | 2 | 4 | 8 | 8 | 12 | 12 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | -1 | 1 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ18 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | -1 | 1 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ19 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | -1 | 1 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -√3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ20 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | -1 | 1 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | √3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ21 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | -4 | 4 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ24 | 4 | 4 | 4 | 0 | 0 | 0 | -2 | -4 | -4 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊3S3, Schur index 2 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | -2√2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 2√2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | √2 | √6 | -√2 | -√6 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | -√2 | -√6 | √2 | √6 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | √2 | -√6 | -√2 | √6 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | -√2 | √6 | √2 | -√6 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 44 19 26 13 32 7 38)(2 27 20 33 14 39 8 45)(3 34 21 40 15 46 9 28)(4 41 22 47 16 29 10 35)(5 48 23 30 17 36 11 42)(6 31 24 37 18 43 12 25)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)(17 24)(18 23)(19 22)(20 21)(25 42)(26 41)(27 40)(28 39)(29 38)(30 37)(31 36)(32 35)(33 34)(43 48)(44 47)(45 46)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,44,19,26,13,32,7,38)(2,27,20,33,14,39,8,45)(3,34,21,40,15,46,9,28)(4,41,22,47,16,29,10,35)(5,48,23,30,17,36,11,42)(6,31,24,37,18,43,12,25), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,24)(18,23)(19,22)(20,21)(25,42)(26,41)(27,40)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34)(43,48)(44,47)(45,46)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,44,19,26,13,32,7,38)(2,27,20,33,14,39,8,45)(3,34,21,40,15,46,9,28)(4,41,22,47,16,29,10,35)(5,48,23,30,17,36,11,42)(6,31,24,37,18,43,12,25), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,24)(18,23)(19,22)(20,21)(25,42)(26,41)(27,40)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34)(43,48)(44,47)(45,46) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,44,19,26,13,32,7,38),(2,27,20,33,14,39,8,45),(3,34,21,40,15,46,9,28),(4,41,22,47,16,29,10,35),(5,48,23,30,17,36,11,42),(6,31,24,37,18,43,12,25)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,24),(18,23),(19,22),(20,21),(25,42),(26,41),(27,40),(28,39),(29,38),(30,37),(31,36),(32,35),(33,34),(43,48),(44,47),(45,46)]])
Matrix representation of C24.19D4 ►in GL6(𝔽73)
9 | 45 | 0 | 0 | 0 | 0 |
0 | 65 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 25 | 0 | 0 |
0 | 0 | 70 | 28 | 0 | 0 |
0 | 0 | 0 | 18 | 28 | 50 |
0 | 0 | 4 | 53 | 35 | 13 |
27 | 27 | 0 | 0 | 0 | 0 |
0 | 46 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 46 | 0 | 71 |
0 | 0 | 21 | 3 | 0 | 0 |
0 | 0 | 25 | 10 | 0 | 27 |
9 | 45 | 0 | 0 | 0 | 0 |
55 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 25 | 0 | 0 |
0 | 0 | 40 | 60 | 0 | 0 |
0 | 0 | 0 | 18 | 28 | 50 |
0 | 0 | 44 | 53 | 15 | 45 |
G:=sub<GL(6,GF(73))| [9,0,0,0,0,0,45,65,0,0,0,0,0,0,13,70,0,4,0,0,25,28,18,53,0,0,0,0,28,35,0,0,0,0,50,13],[27,0,0,0,0,0,27,46,0,0,0,0,0,0,0,0,21,25,0,0,0,46,3,10,0,0,1,0,0,0,0,0,0,71,0,27],[9,55,0,0,0,0,45,64,0,0,0,0,0,0,13,40,0,44,0,0,25,60,18,53,0,0,0,0,28,15,0,0,0,0,50,45] >;
C24.19D4 in GAP, Magma, Sage, TeX
C_{24}._{19}D_4
% in TeX
G:=Group("C24.19D4");
// GroupNames label
G:=SmallGroup(192,456);
// by ID
G=gap.SmallGroup(192,456);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,254,219,226,1123,136,438,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^24=c^2=1,b^4=a^12,b*a*b^-1=a^7,c*a*c=a^-1,c*b*c=a^12*b^3>;
// generators/relations
Export