Copied to
clipboard

G = C22×S3×Q8order 192 = 26·3

Direct product of C22, S3 and Q8

direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary

Aliases: C22×S3×Q8, C6.8C25, C12.43C24, D6.12C24, Dic610C23, Dic3.4C24, C32(Q8×C23), C62(C22×Q8), C2.9(S3×C24), (C3×Q8)⋊6C23, C4.43(S3×C23), (C6×Q8)⋊42C22, (C4×S3).32C23, (C2×C6).328C24, (C22×C4).406D6, (C2×C12).564C23, (C22×Dic6)⋊24C2, (C2×Dic6)⋊73C22, C22.54(S3×C23), C23.359(C22×S3), (C22×C6).435C23, (S3×C23).124C22, (C22×S3).262C23, (C22×C12).300C22, (C2×Dic3).297C23, (C22×Dic3).240C22, (Q8×C2×C6)⋊9C2, (C2×C6)⋊10(C2×Q8), (S3×C22×C4).10C2, (S3×C2×C4).264C22, (C2×C4).644(C22×S3), SmallGroup(192,1517)

Series: Derived Chief Lower central Upper central

C1C6 — C22×S3×Q8
C1C3C6D6C22×S3S3×C23S3×C22×C4 — C22×S3×Q8
C3C6 — C22×S3×Q8
C1C23C22×Q8

Generators and relations for C22×S3×Q8
 G = < a,b,c,d,e,f | a2=b2=c3=d2=e4=1, f2=e2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Subgroups: 1544 in 850 conjugacy classes, 503 normal (10 characteristic)
C1, C2, C2 [×6], C2 [×8], C3, C4 [×12], C4 [×12], C22 [×7], C22 [×28], S3 [×8], C6, C6 [×6], C2×C4 [×18], C2×C4 [×66], Q8 [×16], Q8 [×48], C23, C23 [×14], Dic3 [×12], C12 [×12], D6 [×28], C2×C6 [×7], C22×C4 [×3], C22×C4 [×39], C2×Q8 [×12], C2×Q8 [×100], C24, Dic6 [×48], C4×S3 [×48], C2×Dic3 [×18], C2×C12 [×18], C3×Q8 [×16], C22×S3 [×14], C22×C6, C23×C4 [×3], C22×Q8, C22×Q8 [×27], C2×Dic6 [×36], S3×C2×C4 [×36], S3×Q8 [×64], C22×Dic3 [×3], C22×C12 [×3], C6×Q8 [×12], S3×C23, Q8×C23, C22×Dic6 [×3], S3×C22×C4 [×3], C2×S3×Q8 [×24], Q8×C2×C6, C22×S3×Q8
Quotients: C1, C2 [×31], C22 [×155], S3, Q8 [×8], C23 [×155], D6 [×15], C2×Q8 [×28], C24 [×31], C22×S3 [×35], C22×Q8 [×14], C25, S3×Q8 [×4], S3×C23 [×15], Q8×C23, C2×S3×Q8 [×6], S3×C24, C22×S3×Q8

Smallest permutation representation of C22×S3×Q8
On 96 points
Generators in S96
(1 57)(2 58)(3 59)(4 60)(5 55)(6 56)(7 53)(8 54)(9 64)(10 61)(11 62)(12 63)(13 51)(14 52)(15 49)(16 50)(17 67)(18 68)(19 65)(20 66)(21 71)(22 72)(23 69)(24 70)(25 75)(26 76)(27 73)(28 74)(29 79)(30 80)(31 77)(32 78)(33 83)(34 84)(35 81)(36 82)(37 87)(38 88)(39 85)(40 86)(41 91)(42 92)(43 89)(44 90)(45 95)(46 96)(47 93)(48 94)
(1 33)(2 34)(3 35)(4 36)(5 31)(6 32)(7 29)(8 30)(9 40)(10 37)(11 38)(12 39)(13 75)(14 76)(15 73)(16 74)(17 43)(18 44)(19 41)(20 42)(21 47)(22 48)(23 45)(24 46)(25 51)(26 52)(27 49)(28 50)(53 79)(54 80)(55 77)(56 78)(57 83)(58 84)(59 81)(60 82)(61 87)(62 88)(63 85)(64 86)(65 91)(66 92)(67 89)(68 90)(69 95)(70 96)(71 93)(72 94)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 91 95)(14 92 96)(15 89 93)(16 90 94)(17 21 27)(18 22 28)(19 23 25)(20 24 26)(29 35 38)(30 36 39)(31 33 40)(32 34 37)(41 45 51)(42 46 52)(43 47 49)(44 48 50)(53 59 62)(54 60 63)(55 57 64)(56 58 61)(65 69 75)(66 70 76)(67 71 73)(68 72 74)(77 83 86)(78 84 87)(79 81 88)(80 82 85)
(1 33)(2 34)(3 35)(4 36)(5 40)(6 37)(7 38)(8 39)(9 31)(10 32)(11 29)(12 30)(13 69)(14 70)(15 71)(16 72)(17 43)(18 44)(19 41)(20 42)(21 49)(22 50)(23 51)(24 52)(25 45)(26 46)(27 47)(28 48)(53 88)(54 85)(55 86)(56 87)(57 83)(58 84)(59 81)(60 82)(61 78)(62 79)(63 80)(64 77)(65 91)(66 92)(67 89)(68 90)(73 93)(74 94)(75 95)(76 96)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)
(1 67 3 65)(2 66 4 68)(5 73 7 75)(6 76 8 74)(9 71 11 69)(10 70 12 72)(13 31 15 29)(14 30 16 32)(17 59 19 57)(18 58 20 60)(21 62 23 64)(22 61 24 63)(25 55 27 53)(26 54 28 56)(33 89 35 91)(34 92 36 90)(37 96 39 94)(38 95 40 93)(41 83 43 81)(42 82 44 84)(45 86 47 88)(46 85 48 87)(49 79 51 77)(50 78 52 80)

G:=sub<Sym(96)| (1,57)(2,58)(3,59)(4,60)(5,55)(6,56)(7,53)(8,54)(9,64)(10,61)(11,62)(12,63)(13,51)(14,52)(15,49)(16,50)(17,67)(18,68)(19,65)(20,66)(21,71)(22,72)(23,69)(24,70)(25,75)(26,76)(27,73)(28,74)(29,79)(30,80)(31,77)(32,78)(33,83)(34,84)(35,81)(36,82)(37,87)(38,88)(39,85)(40,86)(41,91)(42,92)(43,89)(44,90)(45,95)(46,96)(47,93)(48,94), (1,33)(2,34)(3,35)(4,36)(5,31)(6,32)(7,29)(8,30)(9,40)(10,37)(11,38)(12,39)(13,75)(14,76)(15,73)(16,74)(17,43)(18,44)(19,41)(20,42)(21,47)(22,48)(23,45)(24,46)(25,51)(26,52)(27,49)(28,50)(53,79)(54,80)(55,77)(56,78)(57,83)(58,84)(59,81)(60,82)(61,87)(62,88)(63,85)(64,86)(65,91)(66,92)(67,89)(68,90)(69,95)(70,96)(71,93)(72,94), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,91,95)(14,92,96)(15,89,93)(16,90,94)(17,21,27)(18,22,28)(19,23,25)(20,24,26)(29,35,38)(30,36,39)(31,33,40)(32,34,37)(41,45,51)(42,46,52)(43,47,49)(44,48,50)(53,59,62)(54,60,63)(55,57,64)(56,58,61)(65,69,75)(66,70,76)(67,71,73)(68,72,74)(77,83,86)(78,84,87)(79,81,88)(80,82,85), (1,33)(2,34)(3,35)(4,36)(5,40)(6,37)(7,38)(8,39)(9,31)(10,32)(11,29)(12,30)(13,69)(14,70)(15,71)(16,72)(17,43)(18,44)(19,41)(20,42)(21,49)(22,50)(23,51)(24,52)(25,45)(26,46)(27,47)(28,48)(53,88)(54,85)(55,86)(56,87)(57,83)(58,84)(59,81)(60,82)(61,78)(62,79)(63,80)(64,77)(65,91)(66,92)(67,89)(68,90)(73,93)(74,94)(75,95)(76,96), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (1,67,3,65)(2,66,4,68)(5,73,7,75)(6,76,8,74)(9,71,11,69)(10,70,12,72)(13,31,15,29)(14,30,16,32)(17,59,19,57)(18,58,20,60)(21,62,23,64)(22,61,24,63)(25,55,27,53)(26,54,28,56)(33,89,35,91)(34,92,36,90)(37,96,39,94)(38,95,40,93)(41,83,43,81)(42,82,44,84)(45,86,47,88)(46,85,48,87)(49,79,51,77)(50,78,52,80)>;

G:=Group( (1,57)(2,58)(3,59)(4,60)(5,55)(6,56)(7,53)(8,54)(9,64)(10,61)(11,62)(12,63)(13,51)(14,52)(15,49)(16,50)(17,67)(18,68)(19,65)(20,66)(21,71)(22,72)(23,69)(24,70)(25,75)(26,76)(27,73)(28,74)(29,79)(30,80)(31,77)(32,78)(33,83)(34,84)(35,81)(36,82)(37,87)(38,88)(39,85)(40,86)(41,91)(42,92)(43,89)(44,90)(45,95)(46,96)(47,93)(48,94), (1,33)(2,34)(3,35)(4,36)(5,31)(6,32)(7,29)(8,30)(9,40)(10,37)(11,38)(12,39)(13,75)(14,76)(15,73)(16,74)(17,43)(18,44)(19,41)(20,42)(21,47)(22,48)(23,45)(24,46)(25,51)(26,52)(27,49)(28,50)(53,79)(54,80)(55,77)(56,78)(57,83)(58,84)(59,81)(60,82)(61,87)(62,88)(63,85)(64,86)(65,91)(66,92)(67,89)(68,90)(69,95)(70,96)(71,93)(72,94), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,91,95)(14,92,96)(15,89,93)(16,90,94)(17,21,27)(18,22,28)(19,23,25)(20,24,26)(29,35,38)(30,36,39)(31,33,40)(32,34,37)(41,45,51)(42,46,52)(43,47,49)(44,48,50)(53,59,62)(54,60,63)(55,57,64)(56,58,61)(65,69,75)(66,70,76)(67,71,73)(68,72,74)(77,83,86)(78,84,87)(79,81,88)(80,82,85), (1,33)(2,34)(3,35)(4,36)(5,40)(6,37)(7,38)(8,39)(9,31)(10,32)(11,29)(12,30)(13,69)(14,70)(15,71)(16,72)(17,43)(18,44)(19,41)(20,42)(21,49)(22,50)(23,51)(24,52)(25,45)(26,46)(27,47)(28,48)(53,88)(54,85)(55,86)(56,87)(57,83)(58,84)(59,81)(60,82)(61,78)(62,79)(63,80)(64,77)(65,91)(66,92)(67,89)(68,90)(73,93)(74,94)(75,95)(76,96), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (1,67,3,65)(2,66,4,68)(5,73,7,75)(6,76,8,74)(9,71,11,69)(10,70,12,72)(13,31,15,29)(14,30,16,32)(17,59,19,57)(18,58,20,60)(21,62,23,64)(22,61,24,63)(25,55,27,53)(26,54,28,56)(33,89,35,91)(34,92,36,90)(37,96,39,94)(38,95,40,93)(41,83,43,81)(42,82,44,84)(45,86,47,88)(46,85,48,87)(49,79,51,77)(50,78,52,80) );

G=PermutationGroup([(1,57),(2,58),(3,59),(4,60),(5,55),(6,56),(7,53),(8,54),(9,64),(10,61),(11,62),(12,63),(13,51),(14,52),(15,49),(16,50),(17,67),(18,68),(19,65),(20,66),(21,71),(22,72),(23,69),(24,70),(25,75),(26,76),(27,73),(28,74),(29,79),(30,80),(31,77),(32,78),(33,83),(34,84),(35,81),(36,82),(37,87),(38,88),(39,85),(40,86),(41,91),(42,92),(43,89),(44,90),(45,95),(46,96),(47,93),(48,94)], [(1,33),(2,34),(3,35),(4,36),(5,31),(6,32),(7,29),(8,30),(9,40),(10,37),(11,38),(12,39),(13,75),(14,76),(15,73),(16,74),(17,43),(18,44),(19,41),(20,42),(21,47),(22,48),(23,45),(24,46),(25,51),(26,52),(27,49),(28,50),(53,79),(54,80),(55,77),(56,78),(57,83),(58,84),(59,81),(60,82),(61,87),(62,88),(63,85),(64,86),(65,91),(66,92),(67,89),(68,90),(69,95),(70,96),(71,93),(72,94)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,91,95),(14,92,96),(15,89,93),(16,90,94),(17,21,27),(18,22,28),(19,23,25),(20,24,26),(29,35,38),(30,36,39),(31,33,40),(32,34,37),(41,45,51),(42,46,52),(43,47,49),(44,48,50),(53,59,62),(54,60,63),(55,57,64),(56,58,61),(65,69,75),(66,70,76),(67,71,73),(68,72,74),(77,83,86),(78,84,87),(79,81,88),(80,82,85)], [(1,33),(2,34),(3,35),(4,36),(5,40),(6,37),(7,38),(8,39),(9,31),(10,32),(11,29),(12,30),(13,69),(14,70),(15,71),(16,72),(17,43),(18,44),(19,41),(20,42),(21,49),(22,50),(23,51),(24,52),(25,45),(26,46),(27,47),(28,48),(53,88),(54,85),(55,86),(56,87),(57,83),(58,84),(59,81),(60,82),(61,78),(62,79),(63,80),(64,77),(65,91),(66,92),(67,89),(68,90),(73,93),(74,94),(75,95),(76,96)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96)], [(1,67,3,65),(2,66,4,68),(5,73,7,75),(6,76,8,74),(9,71,11,69),(10,70,12,72),(13,31,15,29),(14,30,16,32),(17,59,19,57),(18,58,20,60),(21,62,23,64),(22,61,24,63),(25,55,27,53),(26,54,28,56),(33,89,35,91),(34,92,36,90),(37,96,39,94),(38,95,40,93),(41,83,43,81),(42,82,44,84),(45,86,47,88),(46,85,48,87),(49,79,51,77),(50,78,52,80)])

60 conjugacy classes

class 1 2A···2G2H···2O 3 4A···4L4M···4X6A···6G12A···12L
order12···22···234···44···46···612···12
size11···13···322···26···62···24···4

60 irreducible representations

dim1111122224
type++++++-++-
imageC1C2C2C2C2S3Q8D6D6S3×Q8
kernelC22×S3×Q8C22×Dic6S3×C22×C4C2×S3×Q8Q8×C2×C6C22×Q8C22×S3C22×C4C2×Q8C22
# reps133241183124

Matrix representation of C22×S3×Q8 in GL6(𝔽13)

1200000
0120000
0012000
0001200
0000120
0000012
,
100000
010000
0012000
0001200
000010
000001
,
12120000
100000
0001200
0011200
000010
000001
,
100000
12120000
0001200
0012000
000010
000001
,
1200000
0120000
001000
000100
000050
000008
,
100000
010000
001000
000100
000001
0000120

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,12,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,0] >;

C22×S3×Q8 in GAP, Magma, Sage, TeX

C_2^2\times S_3\times Q_8
% in TeX

G:=Group("C2^2xS3xQ8");
// GroupNames label

G:=SmallGroup(192,1517);
// by ID

G=gap.SmallGroup(192,1517);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,136,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^2=e^4=1,f^2=e^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽