Copied to
clipboard

G = D42S4order 192 = 26·3

The semidirect product of D4 and S4 acting through Inn(D4)

non-abelian, soluble, monomial

Aliases: D42S4, C24.D6, (C4×S4)⋊2C2, (D4×A4)⋊3C2, C4.9(C2×S4), A4⋊Q83C2, A42(C4○D4), A4⋊D42C2, (C22×D4)⋊3S3, C22.4(C2×S4), C2.7(C22×S4), (C22×C4).5D6, C22⋊(D42S3), A4⋊C4.3C22, (C4×A4).5C22, (C2×S4).2C22, (C2×A4).6C23, (C22×A4).C22, C23.6(C22×S3), (C2×A4⋊C4)⋊3C2, SmallGroup(192,1473)

Series: Derived Chief Lower central Upper central

C1C22C2×A4 — D42S4
C1C22A4C2×A4C2×S4C4×S4 — D42S4
A4C2×A4 — D42S4
C1C2D4

Generators and relations for D42S4
 G = < a,b,c,d,e,f | a4=b2=c2=d2=e3=f2=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=a2b, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >

Subgroups: 654 in 173 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C2×C4, D4, D4, Q8, C23, C23, Dic3, C12, A4, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, S4, C2×A4, C2×A4, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C22×D4, C2×C4○D4, A4⋊C4, A4⋊C4, C4×A4, D42S3, C2×S4, C22×A4, D45D4, A4⋊Q8, C4×S4, C2×A4⋊C4, A4⋊D4, D4×A4, D42S4
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, S4, C22×S3, D42S3, C2×S4, C22×S4, D42S4

Character table of D42S4

 class 12A2B2C2D2E2F2G2H34A4B4C4D4E4F4G4H4I4J4K6A6B6C12
 size 1122336612826666612121212128161616
ρ11111111111111111111111111    trivial
ρ211-1111-1111-1-1-1-1-1-1-111-111-11-1    linear of order 2
ρ311-1-111-1-1-1111-1-1-1-111-1111-1-11    linear of order 2
ρ4111-1111-1-11-1-11111-11-1-1111-1-1    linear of order 2
ρ5111-1111-111-1-1-1-1-1-11-111-111-1-1    linear of order 2
ρ611-1-111-1-111111111-1-11-1-11-1-11    linear of order 2
ρ711-1111-11-11-1-111111-1-11-11-11-1    linear of order 2
ρ811111111-1111-1-1-1-1-1-1-1-1-11111    linear of order 2
ρ9222-2222-20-1-2-2000000000-1-111    orthogonal lifted from D6
ρ1022-2-222-2-20-122000000000-111-1    orthogonal lifted from D6
ρ11222222220-122000000000-1-1-1-1    orthogonal lifted from S3
ρ1222-2222-220-1-2-2000000000-11-11    orthogonal lifted from D6
ρ132-200-220002002i2i-2i-2i00000-2000    complex lifted from C4○D4
ρ142-200-22000200-2i-2i2i2i00000-2000    complex lifted from C4○D4
ρ1533-33-1-11-1-10-311-11-1-1111-10000    orthogonal lifted from C2×S4
ρ16333-3-1-1-11-10-311-11-11-11-110000    orthogonal lifted from C2×S4
ρ1733-3-3-1-111-103-1-11-11-1-11110000    orthogonal lifted from C2×S4
ρ183333-1-1-1-1-103-1-11-11111-1-10000    orthogonal lifted from S4
ρ193333-1-1-1-1103-11-11-1-1-1-1110000    orthogonal lifted from S4
ρ2033-3-3-1-111103-11-11-111-1-1-10000    orthogonal lifted from C2×S4
ρ21333-3-1-1-1110-31-11-11-11-11-10000    orthogonal lifted from C2×S4
ρ2233-33-1-11-110-31-11-111-1-1-110000    orthogonal lifted from C2×S4
ρ234-400-44000-2000000000002000    symplectic lifted from D42S3, Schur index 2
ρ246-6002-2000000-2i2i2i-2i000000000    complex faithful
ρ256-6002-20000002i-2i-2i2i000000000    complex faithful

Permutation representations of D42S4
On 24 points - transitive group 24T295
Generators in S24
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4)(2 3)(5 6)(7 8)(9 12)(10 11)(13 16)(14 15)(17 20)(18 19)(21 22)(23 24)
(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)
(1 3)(2 4)(5 7)(6 8)(13 15)(14 16)(21 23)(22 24)
(1 11 13)(2 12 14)(3 9 15)(4 10 16)(5 18 21)(6 19 22)(7 20 23)(8 17 24)
(1 23)(2 24)(3 21)(4 22)(5 15)(6 16)(7 13)(8 14)(9 18)(10 19)(11 20)(12 17)

G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,6)(7,8)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,22)(23,24), (9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,3)(2,4)(5,7)(6,8)(13,15)(14,16)(21,23)(22,24), (1,11,13)(2,12,14)(3,9,15)(4,10,16)(5,18,21)(6,19,22)(7,20,23)(8,17,24), (1,23)(2,24)(3,21)(4,22)(5,15)(6,16)(7,13)(8,14)(9,18)(10,19)(11,20)(12,17)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,6)(7,8)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,22)(23,24), (9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,3)(2,4)(5,7)(6,8)(13,15)(14,16)(21,23)(22,24), (1,11,13)(2,12,14)(3,9,15)(4,10,16)(5,18,21)(6,19,22)(7,20,23)(8,17,24), (1,23)(2,24)(3,21)(4,22)(5,15)(6,16)(7,13)(8,14)(9,18)(10,19)(11,20)(12,17) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11),(13,16),(14,15),(17,20),(18,19),(21,22),(23,24)], [(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24)], [(1,3),(2,4),(5,7),(6,8),(13,15),(14,16),(21,23),(22,24)], [(1,11,13),(2,12,14),(3,9,15),(4,10,16),(5,18,21),(6,19,22),(7,20,23),(8,17,24)], [(1,23),(2,24),(3,21),(4,22),(5,15),(6,16),(7,13),(8,14),(9,18),(10,19),(11,20),(12,17)]])

G:=TransitiveGroup(24,295);

On 24 points - transitive group 24T318
Generators in S24
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 22)(2 21)(3 24)(4 23)(5 13)(6 16)(7 15)(8 14)(9 20)(10 19)(11 18)(12 17)
(1 3)(2 4)(9 11)(10 12)(17 19)(18 20)(21 23)(22 24)
(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)
(1 11 6)(2 12 7)(3 9 8)(4 10 5)(13 23 19)(14 24 20)(15 21 17)(16 22 18)
(5 10)(6 11)(7 12)(8 9)(13 17)(14 18)(15 19)(16 20)(21 23)(22 24)

G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,22)(2,21)(3,24)(4,23)(5,13)(6,16)(7,15)(8,14)(9,20)(10,19)(11,18)(12,17), (1,3)(2,4)(9,11)(10,12)(17,19)(18,20)(21,23)(22,24), (5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,11,6)(2,12,7)(3,9,8)(4,10,5)(13,23,19)(14,24,20)(15,21,17)(16,22,18), (5,10)(6,11)(7,12)(8,9)(13,17)(14,18)(15,19)(16,20)(21,23)(22,24)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,22)(2,21)(3,24)(4,23)(5,13)(6,16)(7,15)(8,14)(9,20)(10,19)(11,18)(12,17), (1,3)(2,4)(9,11)(10,12)(17,19)(18,20)(21,23)(22,24), (5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,11,6)(2,12,7)(3,9,8)(4,10,5)(13,23,19)(14,24,20)(15,21,17)(16,22,18), (5,10)(6,11)(7,12)(8,9)(13,17)(14,18)(15,19)(16,20)(21,23)(22,24) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,22),(2,21),(3,24),(4,23),(5,13),(6,16),(7,15),(8,14),(9,20),(10,19),(11,18),(12,17)], [(1,3),(2,4),(9,11),(10,12),(17,19),(18,20),(21,23),(22,24)], [(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20)], [(1,11,6),(2,12,7),(3,9,8),(4,10,5),(13,23,19),(14,24,20),(15,21,17),(16,22,18)], [(5,10),(6,11),(7,12),(8,9),(13,17),(14,18),(15,19),(16,20),(21,23),(22,24)]])

G:=TransitiveGroup(24,318);

On 24 points - transitive group 24T359
Generators in S24
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(2 4)(5 7)(9 11)(13 15)(18 20)(22 24)
(1 17)(2 18)(3 19)(4 20)(5 7)(6 8)(9 22)(10 23)(11 24)(12 21)(13 15)(14 16)
(1 3)(2 4)(5 13)(6 14)(7 15)(8 16)(9 24)(10 21)(11 22)(12 23)(17 19)(18 20)
(1 21 14)(2 22 15)(3 23 16)(4 24 13)(5 18 11)(6 19 12)(7 20 9)(8 17 10)
(1 18)(2 19)(3 20)(4 17)(5 21)(6 22)(7 23)(8 24)(9 16)(10 13)(11 14)(12 15)

G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(5,7)(9,11)(13,15)(18,20)(22,24), (1,17)(2,18)(3,19)(4,20)(5,7)(6,8)(9,22)(10,23)(11,24)(12,21)(13,15)(14,16), (1,3)(2,4)(5,13)(6,14)(7,15)(8,16)(9,24)(10,21)(11,22)(12,23)(17,19)(18,20), (1,21,14)(2,22,15)(3,23,16)(4,24,13)(5,18,11)(6,19,12)(7,20,9)(8,17,10), (1,18)(2,19)(3,20)(4,17)(5,21)(6,22)(7,23)(8,24)(9,16)(10,13)(11,14)(12,15)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(5,7)(9,11)(13,15)(18,20)(22,24), (1,17)(2,18)(3,19)(4,20)(5,7)(6,8)(9,22)(10,23)(11,24)(12,21)(13,15)(14,16), (1,3)(2,4)(5,13)(6,14)(7,15)(8,16)(9,24)(10,21)(11,22)(12,23)(17,19)(18,20), (1,21,14)(2,22,15)(3,23,16)(4,24,13)(5,18,11)(6,19,12)(7,20,9)(8,17,10), (1,18)(2,19)(3,20)(4,17)(5,21)(6,22)(7,23)(8,24)(9,16)(10,13)(11,14)(12,15) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(2,4),(5,7),(9,11),(13,15),(18,20),(22,24)], [(1,17),(2,18),(3,19),(4,20),(5,7),(6,8),(9,22),(10,23),(11,24),(12,21),(13,15),(14,16)], [(1,3),(2,4),(5,13),(6,14),(7,15),(8,16),(9,24),(10,21),(11,22),(12,23),(17,19),(18,20)], [(1,21,14),(2,22,15),(3,23,16),(4,24,13),(5,18,11),(6,19,12),(7,20,9),(8,17,10)], [(1,18),(2,19),(3,20),(4,17),(5,21),(6,22),(7,23),(8,24),(9,16),(10,13),(11,14),(12,15)]])

G:=TransitiveGroup(24,359);

On 24 points - transitive group 24T396
Generators in S24
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 12)(2 11)(3 10)(4 9)(5 21)(6 24)(7 23)(8 22)(13 17)(14 20)(15 19)(16 18)
(1 12)(2 9)(3 10)(4 11)(5 23)(6 24)(7 21)(8 22)(13 15)(14 16)(17 19)(18 20)
(1 3)(2 4)(5 21)(6 22)(7 23)(8 24)(9 11)(10 12)(13 17)(14 18)(15 19)(16 20)
(1 5 18)(2 6 19)(3 7 20)(4 8 17)(9 22 13)(10 23 14)(11 24 15)(12 21 16)
(5 18)(6 19)(7 20)(8 17)(9 11)(10 12)(13 24)(14 21)(15 22)(16 23)

G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,12)(2,11)(3,10)(4,9)(5,21)(6,24)(7,23)(8,22)(13,17)(14,20)(15,19)(16,18), (1,12)(2,9)(3,10)(4,11)(5,23)(6,24)(7,21)(8,22)(13,15)(14,16)(17,19)(18,20), (1,3)(2,4)(5,21)(6,22)(7,23)(8,24)(9,11)(10,12)(13,17)(14,18)(15,19)(16,20), (1,5,18)(2,6,19)(3,7,20)(4,8,17)(9,22,13)(10,23,14)(11,24,15)(12,21,16), (5,18)(6,19)(7,20)(8,17)(9,11)(10,12)(13,24)(14,21)(15,22)(16,23)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,12)(2,11)(3,10)(4,9)(5,21)(6,24)(7,23)(8,22)(13,17)(14,20)(15,19)(16,18), (1,12)(2,9)(3,10)(4,11)(5,23)(6,24)(7,21)(8,22)(13,15)(14,16)(17,19)(18,20), (1,3)(2,4)(5,21)(6,22)(7,23)(8,24)(9,11)(10,12)(13,17)(14,18)(15,19)(16,20), (1,5,18)(2,6,19)(3,7,20)(4,8,17)(9,22,13)(10,23,14)(11,24,15)(12,21,16), (5,18)(6,19)(7,20)(8,17)(9,11)(10,12)(13,24)(14,21)(15,22)(16,23) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,12),(2,11),(3,10),(4,9),(5,21),(6,24),(7,23),(8,22),(13,17),(14,20),(15,19),(16,18)], [(1,12),(2,9),(3,10),(4,11),(5,23),(6,24),(7,21),(8,22),(13,15),(14,16),(17,19),(18,20)], [(1,3),(2,4),(5,21),(6,22),(7,23),(8,24),(9,11),(10,12),(13,17),(14,18),(15,19),(16,20)], [(1,5,18),(2,6,19),(3,7,20),(4,8,17),(9,22,13),(10,23,14),(11,24,15),(12,21,16)], [(5,18),(6,19),(7,20),(8,17),(9,11),(10,12),(13,24),(14,21),(15,22),(16,23)]])

G:=TransitiveGroup(24,396);

Matrix representation of D42S4 in GL5(𝔽13)

80000
115000
001200
000120
000012
,
125000
01000
001200
000120
000012
,
10000
01000
001200
000120
00801
,
10000
01000
00100
008120
005012
,
10000
01000
005011
00005
00218
,
10000
312000
00100
00801
00510

G:=sub<GL(5,GF(13))| [8,11,0,0,0,0,5,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[12,0,0,0,0,5,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,8,0,0,0,12,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,8,5,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,5,0,2,0,0,0,0,1,0,0,11,5,8],[1,3,0,0,0,0,12,0,0,0,0,0,1,8,5,0,0,0,0,1,0,0,0,1,0] >;

D42S4 in GAP, Magma, Sage, TeX

D_4\rtimes_2S_4
% in TeX

G:=Group("D4:2S4");
// GroupNames label

G:=SmallGroup(192,1473);
// by ID

G=gap.SmallGroup(192,1473);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,64,254,135,1124,4037,285,2358,475]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=b^2=c^2=d^2=e^3=f^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=a^2*b,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations

Export

Character table of D42S4 in TeX

׿
×
𝔽