metabelian, supersoluble, monomial
Aliases: He3⋊6D4, C62⋊2S3, C62⋊2C6, C3⋊Dic3⋊C6, C32⋊7D4⋊C3, C6.18(S3×C6), (C3×C6).13D6, C32⋊3(C3×D4), C32⋊C12⋊4C2, C32⋊4(C3⋊D4), (C22×He3)⋊2C2, C22⋊3(C32⋊C6), (C2×He3).10C22, (C2×C3⋊S3)⋊2C6, (C3×C6).5(C2×C6), C3.2(C3×C3⋊D4), (C2×C32⋊C6)⋊4C2, (C2×C6).13(C3×S3), C2.5(C2×C32⋊C6), SmallGroup(216,60)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for He3⋊6D4
G = < a,b,c,d,e | a3=b3=c3=d4=e2=1, ab=ba, cac-1=ab-1, dad-1=eae=a-1, bc=cb, dbd-1=ebe=b-1, cd=dc, ce=ec, ede=d-1 >
Subgroups: 270 in 66 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, D4, C32, C32, Dic3, C12, D6, C2×C6, C2×C6, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊D4, C3×D4, He3, C3×Dic3, C3⋊Dic3, S3×C6, C2×C3⋊S3, C62, C62, C32⋊C6, C2×He3, C2×He3, C3×C3⋊D4, C32⋊7D4, C32⋊C12, C2×C32⋊C6, C22×He3, He3⋊6D4
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, C3×S3, C3⋊D4, C3×D4, S3×C6, C32⋊C6, C3×C3⋊D4, C2×C32⋊C6, He3⋊6D4
(1 16 11)(2 12 13)(3 14 9)(4 10 15)(5 31 26)(6 27 32)(7 29 28)(8 25 30)(17 36 22)(18 23 33)(19 34 24)(20 21 35)
(1 8 21)(2 22 5)(3 6 23)(4 24 7)(9 32 18)(10 19 29)(11 30 20)(12 17 31)(13 36 26)(14 27 33)(15 34 28)(16 25 35)
(9 18 32)(10 19 29)(11 20 30)(12 17 31)(13 26 36)(14 27 33)(15 28 34)(16 25 35)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(2 4)(5 24)(6 23)(7 22)(8 21)(9 14)(10 13)(11 16)(12 15)(17 28)(18 27)(19 26)(20 25)(29 36)(30 35)(31 34)(32 33)
G:=sub<Sym(36)| (1,16,11)(2,12,13)(3,14,9)(4,10,15)(5,31,26)(6,27,32)(7,29,28)(8,25,30)(17,36,22)(18,23,33)(19,34,24)(20,21,35), (1,8,21)(2,22,5)(3,6,23)(4,24,7)(9,32,18)(10,19,29)(11,30,20)(12,17,31)(13,36,26)(14,27,33)(15,34,28)(16,25,35), (9,18,32)(10,19,29)(11,20,30)(12,17,31)(13,26,36)(14,27,33)(15,28,34)(16,25,35), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (2,4)(5,24)(6,23)(7,22)(8,21)(9,14)(10,13)(11,16)(12,15)(17,28)(18,27)(19,26)(20,25)(29,36)(30,35)(31,34)(32,33)>;
G:=Group( (1,16,11)(2,12,13)(3,14,9)(4,10,15)(5,31,26)(6,27,32)(7,29,28)(8,25,30)(17,36,22)(18,23,33)(19,34,24)(20,21,35), (1,8,21)(2,22,5)(3,6,23)(4,24,7)(9,32,18)(10,19,29)(11,30,20)(12,17,31)(13,36,26)(14,27,33)(15,34,28)(16,25,35), (9,18,32)(10,19,29)(11,20,30)(12,17,31)(13,26,36)(14,27,33)(15,28,34)(16,25,35), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (2,4)(5,24)(6,23)(7,22)(8,21)(9,14)(10,13)(11,16)(12,15)(17,28)(18,27)(19,26)(20,25)(29,36)(30,35)(31,34)(32,33) );
G=PermutationGroup([[(1,16,11),(2,12,13),(3,14,9),(4,10,15),(5,31,26),(6,27,32),(7,29,28),(8,25,30),(17,36,22),(18,23,33),(19,34,24),(20,21,35)], [(1,8,21),(2,22,5),(3,6,23),(4,24,7),(9,32,18),(10,19,29),(11,30,20),(12,17,31),(13,36,26),(14,27,33),(15,34,28),(16,25,35)], [(9,18,32),(10,19,29),(11,20,30),(12,17,31),(13,26,36),(14,27,33),(15,28,34),(16,25,35)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(2,4),(5,24),(6,23),(7,22),(8,21),(9,14),(10,13),(11,16),(12,15),(17,28),(18,27),(19,26),(20,25),(29,36),(30,35),(31,34),(32,33)]])
He3⋊6D4 is a maximal subgroup of
C62.8D6 C62.9D6 C62⋊D6 C62⋊2D6 C62.36D6 D4×C32⋊C6 C62.13D6
He3⋊6D4 is a maximal quotient of C62.19D6 C62.21D6 He3⋊8SD16 He3⋊6D8 He3⋊6Q16 He3⋊10SD16 C62⋊3C12
31 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 4 | 6A | 6B | 6C | 6D | 6E | 6F | ··· | 6P | 6Q | 6R | 12A | 12B |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 12 | 12 |
size | 1 | 1 | 2 | 18 | 2 | 3 | 3 | 6 | 6 | 6 | 18 | 2 | 2 | 2 | 3 | 3 | 6 | ··· | 6 | 18 | 18 | 18 | 18 |
31 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | S3 | D4 | D6 | C3×S3 | C3⋊D4 | C3×D4 | S3×C6 | C3×C3⋊D4 | C32⋊C6 | C2×C32⋊C6 | He3⋊6D4 |
kernel | He3⋊6D4 | C32⋊C12 | C2×C32⋊C6 | C22×He3 | C32⋊7D4 | C3⋊Dic3 | C2×C3⋊S3 | C62 | C62 | He3 | C3×C6 | C2×C6 | C32 | C32 | C6 | C3 | C22 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 1 | 1 | 2 |
Matrix representation of He3⋊6D4 ►in GL8(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
6 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0],[6,7,0,0,0,0,0,0,4,7,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0],[1,10,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0] >;
He3⋊6D4 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_6D_4
% in TeX
G:=Group("He3:6D4");
// GroupNames label
G:=SmallGroup(216,60);
// by ID
G=gap.SmallGroup(216,60);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-3,169,1444,736,5189]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=e*a*e=a^-1,b*c=c*b,d*b*d^-1=e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations