metabelian, supersoluble, monomial
Aliases: He3⋊8SD16, C12.3(S3×C6), (C3×C12).8D6, He3⋊3C8⋊9C2, C32⋊9SD16⋊C3, C32⋊4C8⋊1C6, He3⋊3Q8⋊3C2, D4.(C32⋊C6), (D4×He3).1C2, C32⋊4Q8⋊2C6, (C2×He3).27D4, (D4×C32).1S3, (D4×C32).1C6, C32⋊4(C3×SD16), C2.4(He3⋊6D4), C32⋊5(D4.S3), (C4×He3).8C22, (C3×C12).1(C2×C6), (C3×D4).3(C3×S3), (C3×C6).12(C3×D4), C6.20(C3×C3⋊D4), C4.1(C2×C32⋊C6), C3.2(C3×D4.S3), (C3×C6).23(C3⋊D4), SmallGroup(432,152)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for He3⋊8SD16
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, dad-1=a-1, ae=ea, bc=cb, dbd-1=b-1, be=eb, cd=dc, ce=ec, ede=d3 >
Subgroups: 365 in 86 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C8, D4, Q8, C32, C32, Dic3, C12, C12, C2×C6, SD16, C3×C6, C3×C6, C3⋊C8, C24, Dic6, C3×D4, C3×D4, C3×Q8, He3, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C62, D4.S3, C3×SD16, C2×He3, C2×He3, C3×C3⋊C8, C32⋊4C8, C3×Dic6, C32⋊4Q8, D4×C32, D4×C32, C32⋊C12, C4×He3, C22×He3, C3×D4.S3, C32⋊9SD16, He3⋊3C8, He3⋊3Q8, D4×He3, He3⋊8SD16
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, SD16, C3×S3, C3⋊D4, C3×D4, S3×C6, D4.S3, C3×SD16, C32⋊C6, C3×C3⋊D4, C2×C32⋊C6, C3×D4.S3, He3⋊6D4, He3⋊8SD16
(9 31 48)(10 41 32)(11 25 42)(12 43 26)(13 27 44)(14 45 28)(15 29 46)(16 47 30)(33 55 60)(34 61 56)(35 49 62)(36 63 50)(37 51 64)(38 57 52)(39 53 58)(40 59 54)
(1 67 24)(2 17 68)(3 69 18)(4 19 70)(5 71 20)(6 21 72)(7 65 22)(8 23 66)(9 48 31)(10 32 41)(11 42 25)(12 26 43)(13 44 27)(14 28 45)(15 46 29)(16 30 47)(33 55 60)(34 61 56)(35 49 62)(36 63 50)(37 51 64)(38 57 52)(39 53 58)(40 59 54)
(1 15 53)(2 16 54)(3 9 55)(4 10 56)(5 11 49)(6 12 50)(7 13 51)(8 14 52)(17 30 40)(18 31 33)(19 32 34)(20 25 35)(21 26 36)(22 27 37)(23 28 38)(24 29 39)(41 61 70)(42 62 71)(43 63 72)(44 64 65)(45 57 66)(46 58 67)(47 59 68)(48 60 69)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 4)(3 7)(6 8)(9 13)(10 16)(12 14)(17 19)(18 22)(21 23)(26 28)(27 31)(30 32)(33 37)(34 40)(36 38)(41 47)(43 45)(44 48)(50 52)(51 55)(54 56)(57 63)(59 61)(60 64)(65 69)(66 72)(68 70)
G:=sub<Sym(72)| (9,31,48)(10,41,32)(11,25,42)(12,43,26)(13,27,44)(14,45,28)(15,29,46)(16,47,30)(33,55,60)(34,61,56)(35,49,62)(36,63,50)(37,51,64)(38,57,52)(39,53,58)(40,59,54), (1,67,24)(2,17,68)(3,69,18)(4,19,70)(5,71,20)(6,21,72)(7,65,22)(8,23,66)(9,48,31)(10,32,41)(11,42,25)(12,26,43)(13,44,27)(14,28,45)(15,46,29)(16,30,47)(33,55,60)(34,61,56)(35,49,62)(36,63,50)(37,51,64)(38,57,52)(39,53,58)(40,59,54), (1,15,53)(2,16,54)(3,9,55)(4,10,56)(5,11,49)(6,12,50)(7,13,51)(8,14,52)(17,30,40)(18,31,33)(19,32,34)(20,25,35)(21,26,36)(22,27,37)(23,28,38)(24,29,39)(41,61,70)(42,62,71)(43,63,72)(44,64,65)(45,57,66)(46,58,67)(47,59,68)(48,60,69), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,19)(18,22)(21,23)(26,28)(27,31)(30,32)(33,37)(34,40)(36,38)(41,47)(43,45)(44,48)(50,52)(51,55)(54,56)(57,63)(59,61)(60,64)(65,69)(66,72)(68,70)>;
G:=Group( (9,31,48)(10,41,32)(11,25,42)(12,43,26)(13,27,44)(14,45,28)(15,29,46)(16,47,30)(33,55,60)(34,61,56)(35,49,62)(36,63,50)(37,51,64)(38,57,52)(39,53,58)(40,59,54), (1,67,24)(2,17,68)(3,69,18)(4,19,70)(5,71,20)(6,21,72)(7,65,22)(8,23,66)(9,48,31)(10,32,41)(11,42,25)(12,26,43)(13,44,27)(14,28,45)(15,46,29)(16,30,47)(33,55,60)(34,61,56)(35,49,62)(36,63,50)(37,51,64)(38,57,52)(39,53,58)(40,59,54), (1,15,53)(2,16,54)(3,9,55)(4,10,56)(5,11,49)(6,12,50)(7,13,51)(8,14,52)(17,30,40)(18,31,33)(19,32,34)(20,25,35)(21,26,36)(22,27,37)(23,28,38)(24,29,39)(41,61,70)(42,62,71)(43,63,72)(44,64,65)(45,57,66)(46,58,67)(47,59,68)(48,60,69), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,19)(18,22)(21,23)(26,28)(27,31)(30,32)(33,37)(34,40)(36,38)(41,47)(43,45)(44,48)(50,52)(51,55)(54,56)(57,63)(59,61)(60,64)(65,69)(66,72)(68,70) );
G=PermutationGroup([[(9,31,48),(10,41,32),(11,25,42),(12,43,26),(13,27,44),(14,45,28),(15,29,46),(16,47,30),(33,55,60),(34,61,56),(35,49,62),(36,63,50),(37,51,64),(38,57,52),(39,53,58),(40,59,54)], [(1,67,24),(2,17,68),(3,69,18),(4,19,70),(5,71,20),(6,21,72),(7,65,22),(8,23,66),(9,48,31),(10,32,41),(11,42,25),(12,26,43),(13,44,27),(14,28,45),(15,46,29),(16,30,47),(33,55,60),(34,61,56),(35,49,62),(36,63,50),(37,51,64),(38,57,52),(39,53,58),(40,59,54)], [(1,15,53),(2,16,54),(3,9,55),(4,10,56),(5,11,49),(6,12,50),(7,13,51),(8,14,52),(17,30,40),(18,31,33),(19,32,34),(20,25,35),(21,26,36),(22,27,37),(23,28,38),(24,29,39),(41,61,70),(42,62,71),(43,63,72),(44,64,65),(45,57,66),(46,58,67),(47,59,68),(48,60,69)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,4),(3,7),(6,8),(9,13),(10,16),(12,14),(17,19),(18,22),(21,23),(26,28),(27,31),(30,32),(33,37),(34,40),(36,38),(41,47),(43,45),(44,48),(50,52),(51,55),(54,56),(57,63),(59,61),(60,64),(65,69),(66,72),(68,70)]])
41 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 3E | 3F | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | ··· | 6P | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 24A | 24B | 24C | 24D |
order | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 4 | 2 | 3 | 3 | 6 | 6 | 6 | 2 | 36 | 2 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 12 | ··· | 12 | 18 | 18 | 4 | 6 | 6 | 12 | 12 | 12 | 36 | 36 | 18 | 18 | 18 | 18 |
41 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 6 |
type | + | + | + | + | - | + | + | + | - | + | + | |||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | He3⋊8SD16 | S3 | D4 | D6 | SD16 | C3×S3 | C3⋊D4 | C3×D4 | S3×C6 | C3×SD16 | C3×C3⋊D4 | D4.S3 | C3×D4.S3 | C32⋊C6 | C2×C32⋊C6 | He3⋊6D4 |
kernel | He3⋊8SD16 | He3⋊3C8 | He3⋊3Q8 | D4×He3 | C32⋊9SD16 | C32⋊4C8 | C32⋊4Q8 | D4×C32 | C1 | D4×C32 | C2×He3 | C3×C12 | He3 | C3×D4 | C3×C6 | C3×C6 | C12 | C32 | C6 | C32 | C3 | D4 | C4 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 2 | 1 | 1 | 2 |
Matrix representation of He3⋊8SD16 ►in GL10(𝔽73)
0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 64 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 34 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 6 | 16 | 16 | 65 | 8 | 64 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 64 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 64 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 55 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 34 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 15 | 71 | 57 | 0 | 0 | 8 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 64 | 63 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 9 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 65 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 8 | 2 | 16 | 65 | 9 | 63 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 64 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 67 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
67 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 58 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 58 | 0 | 42 | 29 | 0 |
0 | 0 | 0 | 0 | 13 | 58 | 11 | 47 | 42 | 2 |
0 | 0 | 0 | 0 | 33 | 0 | 0 | 15 | 0 | 0 |
0 | 0 | 0 | 0 | 68 | 35 | 0 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 49 | 38 | 12 | 56 | 0 | 62 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 15 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 69 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 24 | 26 | 62 | 0 | 0 | 72 |
G:=sub<GL(10,GF(73))| [0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,1,64,9,0,16,6,0,0,0,0,0,64,0,0,34,16,0,0,0,0,0,0,8,0,0,16,0,0,0,0,0,0,0,1,0,65,0,0,0,0,0,0,0,0,8,8,0,0,0,0,0,0,0,0,0,64],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,64,0,0,55,16,15,0,0,0,0,0,64,0,0,34,71,0,0,0,0,0,0,64,0,0,57,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,64,0,0,0,8,0,0,0,0,0,63,9,65,0,2,12,0,0,0,0,0,1,0,0,16,0,0,0,0,0,0,0,0,0,65,0,0,0,0,0,0,0,0,1,9,0,0,0,0,0,0,0,0,0,63,64],[0,0,0,67,0,0,0,0,0,0,0,0,67,0,0,0,0,0,0,0,0,12,0,12,0,0,0,0,0,0,12,0,12,0,0,0,0,0,0,0,0,0,0,0,58,0,13,33,68,49,0,0,0,0,0,58,58,0,35,38,0,0,0,0,0,0,11,0,0,12,0,0,0,0,2,42,47,15,0,56,0,0,0,0,0,29,42,0,15,0,0,0,0,0,0,0,2,0,0,62],[1,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,1,0,0,15,11,24,0,0,0,0,0,1,0,0,69,26,0,0,0,0,0,0,1,0,0,62,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72] >;
He3⋊8SD16 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_8{\rm SD}_{16}
% in TeX
G:=Group("He3:8SD16");
// GroupNames label
G:=SmallGroup(432,152);
// by ID
G=gap.SmallGroup(432,152);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,197,1011,514,80,4037,2035,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^3>;
// generators/relations