Copied to
clipboard

G = C28⋊D4order 224 = 25·7

3rd semidirect product of C28 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C283D4, Dic71D4, C23.10D14, (C2×D4)⋊6D7, (D4×C14)⋊4C2, (C2×D28)⋊9C2, C41(C7⋊D4), C72(C41D4), C2.28(D4×D7), (C4×Dic7)⋊6C2, C14.52(C2×D4), (C2×C4).52D14, (C2×C14).55C23, (C2×C28).35C22, C22.62(C22×D7), (C22×C14).22C22, (C2×Dic7).39C22, (C22×D7).12C22, (C2×C7⋊D4)⋊7C2, C2.16(C2×C7⋊D4), SmallGroup(224,135)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C28⋊D4
C1C7C14C2×C14C22×D7C2×D28 — C28⋊D4
C7C2×C14 — C28⋊D4
C1C22C2×D4

Generators and relations for C28⋊D4
 G = < a,b,c | a28=b4=c2=1, bab-1=a13, cac=a-1, cbc=b-1 >

Subgroups: 510 in 108 conjugacy classes, 37 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C14, C42, C2×D4, C2×D4, Dic7, C28, D14, C2×C14, C2×C14, C41D4, D28, C2×Dic7, C7⋊D4, C2×C28, C7×D4, C22×D7, C22×C14, C4×Dic7, C2×D28, C2×C7⋊D4, D4×C14, C28⋊D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C41D4, C7⋊D4, C22×D7, D4×D7, C2×C7⋊D4, C28⋊D4

Smallest permutation representation of C28⋊D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 62 95 50)(2 75 96 35)(3 60 97 48)(4 73 98 33)(5 58 99 46)(6 71 100 31)(7 84 101 44)(8 69 102 29)(9 82 103 42)(10 67 104 55)(11 80 105 40)(12 65 106 53)(13 78 107 38)(14 63 108 51)(15 76 109 36)(16 61 110 49)(17 74 111 34)(18 59 112 47)(19 72 85 32)(20 57 86 45)(21 70 87 30)(22 83 88 43)(23 68 89 56)(24 81 90 41)(25 66 91 54)(26 79 92 39)(27 64 93 52)(28 77 94 37)
(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 20)(11 19)(12 18)(13 17)(14 16)(29 83)(30 82)(31 81)(32 80)(33 79)(34 78)(35 77)(36 76)(37 75)(38 74)(39 73)(40 72)(41 71)(42 70)(43 69)(44 68)(45 67)(46 66)(47 65)(48 64)(49 63)(50 62)(51 61)(52 60)(53 59)(54 58)(55 57)(56 84)(85 105)(86 104)(87 103)(88 102)(89 101)(90 100)(91 99)(92 98)(93 97)(94 96)(106 112)(107 111)(108 110)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,62,95,50)(2,75,96,35)(3,60,97,48)(4,73,98,33)(5,58,99,46)(6,71,100,31)(7,84,101,44)(8,69,102,29)(9,82,103,42)(10,67,104,55)(11,80,105,40)(12,65,106,53)(13,78,107,38)(14,63,108,51)(15,76,109,36)(16,61,110,49)(17,74,111,34)(18,59,112,47)(19,72,85,32)(20,57,86,45)(21,70,87,30)(22,83,88,43)(23,68,89,56)(24,81,90,41)(25,66,91,54)(26,79,92,39)(27,64,93,52)(28,77,94,37), (2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)(56,84)(85,105)(86,104)(87,103)(88,102)(89,101)(90,100)(91,99)(92,98)(93,97)(94,96)(106,112)(107,111)(108,110)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,62,95,50)(2,75,96,35)(3,60,97,48)(4,73,98,33)(5,58,99,46)(6,71,100,31)(7,84,101,44)(8,69,102,29)(9,82,103,42)(10,67,104,55)(11,80,105,40)(12,65,106,53)(13,78,107,38)(14,63,108,51)(15,76,109,36)(16,61,110,49)(17,74,111,34)(18,59,112,47)(19,72,85,32)(20,57,86,45)(21,70,87,30)(22,83,88,43)(23,68,89,56)(24,81,90,41)(25,66,91,54)(26,79,92,39)(27,64,93,52)(28,77,94,37), (2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)(56,84)(85,105)(86,104)(87,103)(88,102)(89,101)(90,100)(91,99)(92,98)(93,97)(94,96)(106,112)(107,111)(108,110) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,62,95,50),(2,75,96,35),(3,60,97,48),(4,73,98,33),(5,58,99,46),(6,71,100,31),(7,84,101,44),(8,69,102,29),(9,82,103,42),(10,67,104,55),(11,80,105,40),(12,65,106,53),(13,78,107,38),(14,63,108,51),(15,76,109,36),(16,61,110,49),(17,74,111,34),(18,59,112,47),(19,72,85,32),(20,57,86,45),(21,70,87,30),(22,83,88,43),(23,68,89,56),(24,81,90,41),(25,66,91,54),(26,79,92,39),(27,64,93,52),(28,77,94,37)], [(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,20),(11,19),(12,18),(13,17),(14,16),(29,83),(30,82),(31,81),(32,80),(33,79),(34,78),(35,77),(36,76),(37,75),(38,74),(39,73),(40,72),(41,71),(42,70),(43,69),(44,68),(45,67),(46,66),(47,65),(48,64),(49,63),(50,62),(51,61),(52,60),(53,59),(54,58),(55,57),(56,84),(85,105),(86,104),(87,103),(88,102),(89,101),(90,100),(91,99),(92,98),(93,97),(94,96),(106,112),(107,111),(108,110)]])

C28⋊D4 is a maximal subgroup of
C23.2D28  D281D4  Dic7.SD16  Dic142D4  C4⋊C4.D14  D283D4  Dic7⋊D8  C565D4  C5611D4  Dic75SD16  C5615D4  C569D4  D2818D4  2+ 1+4⋊D7  C42.228D14  Dic1424D4  C42.114D14  C42.116D14  C243D14  C24.34D14  C24.36D14  C28⋊(C4○D4)  Dic1420D4  C14.382+ 1+4  D2819D4  C14.442+ 1+4  C14.472+ 1+4  C14.482+ 1+4  C14.662+ 1+4  C14.672+ 1+4  C14.682+ 1+4  C42.233D14  C4218D14  C42.143D14  D7×C41D4  C4226D14  Dic1411D4  D4×C7⋊D4  C24.41D14  C14.1462+ 1+4  (C2×C28)⋊17D4  C14.1482+ 1+4
C28⋊D4 is a maximal quotient of
C24.7D14  C24.13D14  C232D28  (C4×Dic7)⋊8C4  (C2×D28)⋊10C4  (C2×C28).289D4  C42.64D14  C42.214D14  C42.65D14  C28⋊D8  C42.74D14  C284SD16  C286SD16  C42.80D14  C283Q16  C565D4  C5611D4  C56.22D4  C56.31D4  C56.43D4  C5615D4  C569D4  C56.26D4  C56.37D4  C56.28D4  C24.19D14  C24.21D14

44 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F7A7B7C14A···14I14J···14U28A···28F
order1222222244444477714···1414···1428···28
size111144282822141414142222···24···44···4

44 irreducible representations

dim111112222224
type+++++++++++
imageC1C2C2C2C2D4D4D7D14D14C7⋊D4D4×D7
kernelC28⋊D4C4×Dic7C2×D28C2×C7⋊D4D4×C14Dic7C28C2×D4C2×C4C23C4C2
# reps1114142336126

Matrix representation of C28⋊D4 in GL4(𝔽29) generated by

12600
32100
002817
0051
,
51600
22400
00280
00028
,
1000
32800
0010
002428
G:=sub<GL(4,GF(29))| [1,3,0,0,26,21,0,0,0,0,28,5,0,0,17,1],[5,2,0,0,16,24,0,0,0,0,28,0,0,0,0,28],[1,3,0,0,0,28,0,0,0,0,1,24,0,0,0,28] >;

C28⋊D4 in GAP, Magma, Sage, TeX

C_{28}\rtimes D_4
% in TeX

G:=Group("C28:D4");
// GroupNames label

G:=SmallGroup(224,135);
// by ID

G=gap.SmallGroup(224,135);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,103,218,188,6917]);
// Polycyclic

G:=Group<a,b,c|a^28=b^4=c^2=1,b*a*b^-1=a^13,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽