Copied to
clipboard

G = C14.1462+ 1+4order 448 = 26·7

55th non-split extension by C14 of 2+ 1+4 acting via 2+ 1+4/C4○D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C14.1462+ 1+4, (C2×C28)⋊16D4, (C2×D4)⋊45D14, (C2×Q8)⋊34D14, C287D448C2, C28⋊D430C2, C28.430(C2×D4), (C22×C4)⋊31D14, C23⋊D1432C2, D14⋊C438C22, (C22×D28)⋊21C2, (D4×C14)⋊48C22, C4⋊Dic766C22, (Q8×C14)⋊41C22, C28.23D432C2, (C2×C14).316C24, (C2×C28).653C23, (C22×C28)⋊32C22, C77(C22.29C24), (C4×Dic7)⋊45C22, C14.166(C22×D4), C2.70(D48D14), (C2×D28).281C22, (C23×D7).80C22, C22.325(C23×D7), C23.212(C22×D7), C23.21D1439C2, (C22×C14).242C23, (C2×Dic7).163C23, (C22×D7).138C23, C23.D7.136C22, (C2×C4○D4)⋊8D7, (C14×C4○D4)⋊8C2, (C2×C4)⋊7(C7⋊D4), C4.33(C2×C7⋊D4), (C2×C14).82(C2×D4), (C2×C7⋊D4)⋊31C22, C22.24(C2×C7⋊D4), C2.39(C22×C7⋊D4), (C2×C4).251(C22×D7), SmallGroup(448,1283)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C14.1462+ 1+4
C1C7C14C2×C14C22×D7C23×D7C22×D28 — C14.1462+ 1+4
C7C2×C14 — C14.1462+ 1+4
C1C22C2×C4○D4

Generators and relations for C14.1462+ 1+4
 G = < a,b,c,d,e | a14=b4=e2=1, c2=a7, d2=a7b2, ab=ba, cac-1=dad-1=a-1, ae=ea, cbc-1=a7b-1, dbd-1=a7b, be=eb, cd=dc, ece=a7c, ede=a7b2d >

Subgroups: 1876 in 334 conjugacy classes, 111 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, D7, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic7, C28, C28, D14, C2×C14, C2×C14, C2×C14, C42⋊C2, C22≀C2, C4⋊D4, C4.4D4, C41D4, C22×D4, C2×C4○D4, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C2×C28, C7×D4, C7×Q8, C22×D7, C22×D7, C22×C14, C22×C14, C22.29C24, C4×Dic7, C4⋊Dic7, D14⋊C4, C23.D7, C2×D28, C2×D28, C2×C7⋊D4, C22×C28, C22×C28, D4×C14, D4×C14, Q8×C14, C7×C4○D4, C23×D7, C23.21D14, C287D4, C23⋊D14, C28⋊D4, C28.23D4, C22×D28, C14×C4○D4, C14.1462+ 1+4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, 2+ 1+4, C7⋊D4, C22×D7, C22.29C24, C2×C7⋊D4, C23×D7, D48D14, C22×C7⋊D4, C14.1462+ 1+4

Smallest permutation representation of C14.1462+ 1+4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 95 81 59)(2 96 82 60)(3 97 83 61)(4 98 84 62)(5 85 71 63)(6 86 72 64)(7 87 73 65)(8 88 74 66)(9 89 75 67)(10 90 76 68)(11 91 77 69)(12 92 78 70)(13 93 79 57)(14 94 80 58)(15 44 100 38)(16 45 101 39)(17 46 102 40)(18 47 103 41)(19 48 104 42)(20 49 105 29)(21 50 106 30)(22 51 107 31)(23 52 108 32)(24 53 109 33)(25 54 110 34)(26 55 111 35)(27 56 112 36)(28 43 99 37)
(1 59 8 66)(2 58 9 65)(3 57 10 64)(4 70 11 63)(5 69 12 62)(6 68 13 61)(7 67 14 60)(15 33 22 40)(16 32 23 39)(17 31 24 38)(18 30 25 37)(19 29 26 36)(20 42 27 35)(21 41 28 34)(43 103 50 110)(44 102 51 109)(45 101 52 108)(46 100 53 107)(47 99 54 106)(48 112 55 105)(49 111 56 104)(71 91 78 98)(72 90 79 97)(73 89 80 96)(74 88 81 95)(75 87 82 94)(76 86 83 93)(77 85 84 92)
(1 101 74 23)(2 100 75 22)(3 99 76 21)(4 112 77 20)(5 111 78 19)(6 110 79 18)(7 109 80 17)(8 108 81 16)(9 107 82 15)(10 106 83 28)(11 105 84 27)(12 104 71 26)(13 103 72 25)(14 102 73 24)(29 69 56 98)(30 68 43 97)(31 67 44 96)(32 66 45 95)(33 65 46 94)(34 64 47 93)(35 63 48 92)(36 62 49 91)(37 61 50 90)(38 60 51 89)(39 59 52 88)(40 58 53 87)(41 57 54 86)(42 70 55 85)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 15)(8 16)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(29 70)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 86)(44 87)(45 88)(46 89)(47 90)(48 91)(49 92)(50 93)(51 94)(52 95)(53 96)(54 97)(55 98)(56 85)(71 112)(72 99)(73 100)(74 101)(75 102)(76 103)(77 104)(78 105)(79 106)(80 107)(81 108)(82 109)(83 110)(84 111)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,95,81,59)(2,96,82,60)(3,97,83,61)(4,98,84,62)(5,85,71,63)(6,86,72,64)(7,87,73,65)(8,88,74,66)(9,89,75,67)(10,90,76,68)(11,91,77,69)(12,92,78,70)(13,93,79,57)(14,94,80,58)(15,44,100,38)(16,45,101,39)(17,46,102,40)(18,47,103,41)(19,48,104,42)(20,49,105,29)(21,50,106,30)(22,51,107,31)(23,52,108,32)(24,53,109,33)(25,54,110,34)(26,55,111,35)(27,56,112,36)(28,43,99,37), (1,59,8,66)(2,58,9,65)(3,57,10,64)(4,70,11,63)(5,69,12,62)(6,68,13,61)(7,67,14,60)(15,33,22,40)(16,32,23,39)(17,31,24,38)(18,30,25,37)(19,29,26,36)(20,42,27,35)(21,41,28,34)(43,103,50,110)(44,102,51,109)(45,101,52,108)(46,100,53,107)(47,99,54,106)(48,112,55,105)(49,111,56,104)(71,91,78,98)(72,90,79,97)(73,89,80,96)(74,88,81,95)(75,87,82,94)(76,86,83,93)(77,85,84,92), (1,101,74,23)(2,100,75,22)(3,99,76,21)(4,112,77,20)(5,111,78,19)(6,110,79,18)(7,109,80,17)(8,108,81,16)(9,107,82,15)(10,106,83,28)(11,105,84,27)(12,104,71,26)(13,103,72,25)(14,102,73,24)(29,69,56,98)(30,68,43,97)(31,67,44,96)(32,66,45,95)(33,65,46,94)(34,64,47,93)(35,63,48,92)(36,62,49,91)(37,61,50,90)(38,60,51,89)(39,59,52,88)(40,58,53,87)(41,57,54,86)(42,70,55,85), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(29,70)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,86)(44,87)(45,88)(46,89)(47,90)(48,91)(49,92)(50,93)(51,94)(52,95)(53,96)(54,97)(55,98)(56,85)(71,112)(72,99)(73,100)(74,101)(75,102)(76,103)(77,104)(78,105)(79,106)(80,107)(81,108)(82,109)(83,110)(84,111)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,95,81,59)(2,96,82,60)(3,97,83,61)(4,98,84,62)(5,85,71,63)(6,86,72,64)(7,87,73,65)(8,88,74,66)(9,89,75,67)(10,90,76,68)(11,91,77,69)(12,92,78,70)(13,93,79,57)(14,94,80,58)(15,44,100,38)(16,45,101,39)(17,46,102,40)(18,47,103,41)(19,48,104,42)(20,49,105,29)(21,50,106,30)(22,51,107,31)(23,52,108,32)(24,53,109,33)(25,54,110,34)(26,55,111,35)(27,56,112,36)(28,43,99,37), (1,59,8,66)(2,58,9,65)(3,57,10,64)(4,70,11,63)(5,69,12,62)(6,68,13,61)(7,67,14,60)(15,33,22,40)(16,32,23,39)(17,31,24,38)(18,30,25,37)(19,29,26,36)(20,42,27,35)(21,41,28,34)(43,103,50,110)(44,102,51,109)(45,101,52,108)(46,100,53,107)(47,99,54,106)(48,112,55,105)(49,111,56,104)(71,91,78,98)(72,90,79,97)(73,89,80,96)(74,88,81,95)(75,87,82,94)(76,86,83,93)(77,85,84,92), (1,101,74,23)(2,100,75,22)(3,99,76,21)(4,112,77,20)(5,111,78,19)(6,110,79,18)(7,109,80,17)(8,108,81,16)(9,107,82,15)(10,106,83,28)(11,105,84,27)(12,104,71,26)(13,103,72,25)(14,102,73,24)(29,69,56,98)(30,68,43,97)(31,67,44,96)(32,66,45,95)(33,65,46,94)(34,64,47,93)(35,63,48,92)(36,62,49,91)(37,61,50,90)(38,60,51,89)(39,59,52,88)(40,58,53,87)(41,57,54,86)(42,70,55,85), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(29,70)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,86)(44,87)(45,88)(46,89)(47,90)(48,91)(49,92)(50,93)(51,94)(52,95)(53,96)(54,97)(55,98)(56,85)(71,112)(72,99)(73,100)(74,101)(75,102)(76,103)(77,104)(78,105)(79,106)(80,107)(81,108)(82,109)(83,110)(84,111) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,95,81,59),(2,96,82,60),(3,97,83,61),(4,98,84,62),(5,85,71,63),(6,86,72,64),(7,87,73,65),(8,88,74,66),(9,89,75,67),(10,90,76,68),(11,91,77,69),(12,92,78,70),(13,93,79,57),(14,94,80,58),(15,44,100,38),(16,45,101,39),(17,46,102,40),(18,47,103,41),(19,48,104,42),(20,49,105,29),(21,50,106,30),(22,51,107,31),(23,52,108,32),(24,53,109,33),(25,54,110,34),(26,55,111,35),(27,56,112,36),(28,43,99,37)], [(1,59,8,66),(2,58,9,65),(3,57,10,64),(4,70,11,63),(5,69,12,62),(6,68,13,61),(7,67,14,60),(15,33,22,40),(16,32,23,39),(17,31,24,38),(18,30,25,37),(19,29,26,36),(20,42,27,35),(21,41,28,34),(43,103,50,110),(44,102,51,109),(45,101,52,108),(46,100,53,107),(47,99,54,106),(48,112,55,105),(49,111,56,104),(71,91,78,98),(72,90,79,97),(73,89,80,96),(74,88,81,95),(75,87,82,94),(76,86,83,93),(77,85,84,92)], [(1,101,74,23),(2,100,75,22),(3,99,76,21),(4,112,77,20),(5,111,78,19),(6,110,79,18),(7,109,80,17),(8,108,81,16),(9,107,82,15),(10,106,83,28),(11,105,84,27),(12,104,71,26),(13,103,72,25),(14,102,73,24),(29,69,56,98),(30,68,43,97),(31,67,44,96),(32,66,45,95),(33,65,46,94),(34,64,47,93),(35,63,48,92),(36,62,49,91),(37,61,50,90),(38,60,51,89),(39,59,52,88),(40,58,53,87),(41,57,54,86),(42,70,55,85)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,15),(8,16),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(29,70),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,86),(44,87),(45,88),(46,89),(47,90),(48,91),(49,92),(50,93),(51,94),(52,95),(53,96),(54,97),(55,98),(56,85),(71,112),(72,99),(73,100),(74,101),(75,102),(76,103),(77,104),(78,105),(79,106),(80,107),(81,108),(82,109),(83,110),(84,111)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J7A7B7C14A···14I14J···14AA28A···28L28M···28AD
order122222222222444444444477714···1414···1428···2828···28
size1111224428282828222244282828282222···24···42···24···4

82 irreducible representations

dim1111111122222244
type+++++++++++++++
imageC1C2C2C2C2C2C2C2D4D7D14D14D14C7⋊D42+ 1+4D48D14
kernelC14.1462+ 1+4C23.21D14C287D4C23⋊D14C28⋊D4C28.23D4C22×D28C14×C4○D4C2×C28C2×C4○D4C22×C4C2×D4C2×Q8C2×C4C14C2
# reps114422114399324212

Matrix representation of C14.1462+ 1+4 in GL8(𝔽29)

2621000000
821000000
002800000
000280000
00001000
00000100
00000010
00000001
,
280000000
028000000
0013130000
0025160000
0000130013
000040113
000022801
000070016
,
2126000000
218000000
0013130000
007160000
0000130013
000040113
00000101
0000250016
,
2126000000
218000000
0016160000
0022130000
0000161300
000071300
0000271028
000041610
,
10000000
01000000
0016160000
004130000
0000161300
0000251300
00000101
000041610

G:=sub<GL(8,GF(29))| [26,8,0,0,0,0,0,0,21,21,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,13,25,0,0,0,0,0,0,13,16,0,0,0,0,0,0,0,0,13,4,2,7,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,13,13,1,16],[21,21,0,0,0,0,0,0,26,8,0,0,0,0,0,0,0,0,13,7,0,0,0,0,0,0,13,16,0,0,0,0,0,0,0,0,13,4,0,25,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,13,13,1,16],[21,21,0,0,0,0,0,0,26,8,0,0,0,0,0,0,0,0,16,22,0,0,0,0,0,0,16,13,0,0,0,0,0,0,0,0,16,7,27,4,0,0,0,0,13,13,1,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,4,0,0,0,0,0,0,16,13,0,0,0,0,0,0,0,0,16,25,0,4,0,0,0,0,13,13,1,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

C14.1462+ 1+4 in GAP, Magma, Sage, TeX

C_{14}._{146}2_+^{1+4}
% in TeX

G:=Group("C14.146ES+(2,2)");
// GroupNames label

G:=SmallGroup(448,1283);
// by ID

G=gap.SmallGroup(448,1283);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,184,675,570,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^14=b^4=e^2=1,c^2=a^7,d^2=a^7*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=a^7*b^-1,d*b*d^-1=a^7*b,b*e=e*b,c*d=d*c,e*c*e=a^7*c,e*d*e=a^7*b^2*d>;
// generators/relations

׿
×
𝔽