Extensions 1→N→G→Q→1 with N=C3xC6 and Q=C2xC8

Direct product G=NxQ with N=C3xC6 and Q=C2xC8
dρLabelID
C2xC6xC24288C2xC6xC24288,826

Semidirect products G=N:Q with N=C3xC6 and Q=C2xC8
extensionφ:Q→Aut NdρLabelID
(C3xC6):(C2xC8) = C22xF9φ: C2xC8/C2C8 ⊆ Aut C3xC636(C3xC6):(C2xC8)288,1030
(C3xC6):2(C2xC8) = C2xC3:S3:3C8φ: C2xC8/C4C4 ⊆ Aut C3xC648(C3xC6):2(C2xC8)288,929
(C3xC6):3(C2xC8) = C2xS3xC3:C8φ: C2xC8/C4C22 ⊆ Aut C3xC696(C3xC6):3(C2xC8)288,460
(C3xC6):4(C2xC8) = C2xC12.29D6φ: C2xC8/C4C22 ⊆ Aut C3xC648(C3xC6):4(C2xC8)288,464
(C3xC6):5(C2xC8) = C22xC32:2C8φ: C2xC8/C22C4 ⊆ Aut C3xC696(C3xC6):5(C2xC8)288,939
(C3xC6):6(C2xC8) = S3xC2xC24φ: C2xC8/C8C2 ⊆ Aut C3xC696(C3xC6):6(C2xC8)288,670
(C3xC6):7(C2xC8) = C2xC8xC3:S3φ: C2xC8/C8C2 ⊆ Aut C3xC6144(C3xC6):7(C2xC8)288,756
(C3xC6):8(C2xC8) = C2xC6xC3:C8φ: C2xC8/C2xC4C2 ⊆ Aut C3xC696(C3xC6):8(C2xC8)288,691
(C3xC6):9(C2xC8) = C22xC32:4C8φ: C2xC8/C2xC4C2 ⊆ Aut C3xC6288(C3xC6):9(C2xC8)288,777

Non-split extensions G=N.Q with N=C3xC6 and Q=C2xC8
extensionφ:Q→Aut NdρLabelID
(C3xC6).1(C2xC8) = C4.3F9φ: C2xC8/C2C8 ⊆ Aut C3xC6488(C3xC6).1(C2xC8)288,861
(C3xC6).2(C2xC8) = C4.F9φ: C2xC8/C2C8 ⊆ Aut C3xC6488(C3xC6).2(C2xC8)288,862
(C3xC6).3(C2xC8) = C4xF9φ: C2xC8/C2C8 ⊆ Aut C3xC6368(C3xC6).3(C2xC8)288,863
(C3xC6).4(C2xC8) = C4:F9φ: C2xC8/C2C8 ⊆ Aut C3xC6368(C3xC6).4(C2xC8)288,864
(C3xC6).5(C2xC8) = C2xC2.F9φ: C2xC8/C2C8 ⊆ Aut C3xC696(C3xC6).5(C2xC8)288,865
(C3xC6).6(C2xC8) = C22.F9φ: C2xC8/C2C8 ⊆ Aut C3xC6488-(C3xC6).6(C2xC8)288,866
(C3xC6).7(C2xC8) = C22:F9φ: C2xC8/C2C8 ⊆ Aut C3xC6248+(C3xC6).7(C2xC8)288,867
(C3xC6).8(C2xC8) = C3:S3:3C16φ: C2xC8/C4C4 ⊆ Aut C3xC6484(C3xC6).8(C2xC8)288,412
(C3xC6).9(C2xC8) = C32:3M5(2)φ: C2xC8/C4C4 ⊆ Aut C3xC6484(C3xC6).9(C2xC8)288,413
(C3xC6).10(C2xC8) = C62.6(C2xC4)φ: C2xC8/C4C4 ⊆ Aut C3xC648(C3xC6).10(C2xC8)288,426
(C3xC6).11(C2xC8) = C32:5(C4:C8)φ: C2xC8/C4C4 ⊆ Aut C3xC696(C3xC6).11(C2xC8)288,427
(C3xC6).12(C2xC8) = S3xC3:C16φ: C2xC8/C4C22 ⊆ Aut C3xC6964(C3xC6).12(C2xC8)288,189
(C3xC6).13(C2xC8) = C24.60D6φ: C2xC8/C4C22 ⊆ Aut C3xC6484(C3xC6).13(C2xC8)288,190
(C3xC6).14(C2xC8) = C24.61D6φ: C2xC8/C4C22 ⊆ Aut C3xC6964(C3xC6).14(C2xC8)288,191
(C3xC6).15(C2xC8) = C24.62D6φ: C2xC8/C4C22 ⊆ Aut C3xC6484(C3xC6).15(C2xC8)288,192
(C3xC6).16(C2xC8) = Dic3xC3:C8φ: C2xC8/C4C22 ⊆ Aut C3xC696(C3xC6).16(C2xC8)288,200
(C3xC6).17(C2xC8) = C6.(S3xC8)φ: C2xC8/C4C22 ⊆ Aut C3xC696(C3xC6).17(C2xC8)288,201
(C3xC6).18(C2xC8) = C12.77D12φ: C2xC8/C4C22 ⊆ Aut C3xC696(C3xC6).18(C2xC8)288,204
(C3xC6).19(C2xC8) = C12.78D12φ: C2xC8/C4C22 ⊆ Aut C3xC648(C3xC6).19(C2xC8)288,205
(C3xC6).20(C2xC8) = C12.81D12φ: C2xC8/C4C22 ⊆ Aut C3xC696(C3xC6).20(C2xC8)288,219
(C3xC6).21(C2xC8) = C12.15Dic6φ: C2xC8/C4C22 ⊆ Aut C3xC696(C3xC6).21(C2xC8)288,220
(C3xC6).22(C2xC8) = C2xC32:2C16φ: C2xC8/C22C4 ⊆ Aut C3xC696(C3xC6).22(C2xC8)288,420
(C3xC6).23(C2xC8) = C62.4C8φ: C2xC8/C22C4 ⊆ Aut C3xC6484(C3xC6).23(C2xC8)288,421
(C3xC6).24(C2xC8) = C4xC32:2C8φ: C2xC8/C22C4 ⊆ Aut C3xC696(C3xC6).24(C2xC8)288,423
(C3xC6).25(C2xC8) = (C3xC12):4C8φ: C2xC8/C22C4 ⊆ Aut C3xC696(C3xC6).25(C2xC8)288,424
(C3xC6).26(C2xC8) = C62:3C8φ: C2xC8/C22C4 ⊆ Aut C3xC648(C3xC6).26(C2xC8)288,435
(C3xC6).27(C2xC8) = S3xC48φ: C2xC8/C8C2 ⊆ Aut C3xC6962(C3xC6).27(C2xC8)288,231
(C3xC6).28(C2xC8) = C3xD6.C8φ: C2xC8/C8C2 ⊆ Aut C3xC6962(C3xC6).28(C2xC8)288,232
(C3xC6).29(C2xC8) = Dic3xC24φ: C2xC8/C8C2 ⊆ Aut C3xC696(C3xC6).29(C2xC8)288,247
(C3xC6).30(C2xC8) = C3xDic3:C8φ: C2xC8/C8C2 ⊆ Aut C3xC696(C3xC6).30(C2xC8)288,248
(C3xC6).31(C2xC8) = C3xD6:C8φ: C2xC8/C8C2 ⊆ Aut C3xC696(C3xC6).31(C2xC8)288,254
(C3xC6).32(C2xC8) = C16xC3:S3φ: C2xC8/C8C2 ⊆ Aut C3xC6144(C3xC6).32(C2xC8)288,272
(C3xC6).33(C2xC8) = C48:S3φ: C2xC8/C8C2 ⊆ Aut C3xC6144(C3xC6).33(C2xC8)288,273
(C3xC6).34(C2xC8) = C8xC3:Dic3φ: C2xC8/C8C2 ⊆ Aut C3xC6288(C3xC6).34(C2xC8)288,288
(C3xC6).35(C2xC8) = C12.30Dic6φ: C2xC8/C8C2 ⊆ Aut C3xC6288(C3xC6).35(C2xC8)288,289
(C3xC6).36(C2xC8) = C12.60D12φ: C2xC8/C8C2 ⊆ Aut C3xC6144(C3xC6).36(C2xC8)288,295
(C3xC6).37(C2xC8) = C12xC3:C8φ: C2xC8/C2xC4C2 ⊆ Aut C3xC696(C3xC6).37(C2xC8)288,236
(C3xC6).38(C2xC8) = C3xC12:C8φ: C2xC8/C2xC4C2 ⊆ Aut C3xC696(C3xC6).38(C2xC8)288,238
(C3xC6).39(C2xC8) = C6xC3:C16φ: C2xC8/C2xC4C2 ⊆ Aut C3xC696(C3xC6).39(C2xC8)288,245
(C3xC6).40(C2xC8) = C3xC12.C8φ: C2xC8/C2xC4C2 ⊆ Aut C3xC6482(C3xC6).40(C2xC8)288,246
(C3xC6).41(C2xC8) = C3xC12.55D4φ: C2xC8/C2xC4C2 ⊆ Aut C3xC648(C3xC6).41(C2xC8)288,264
(C3xC6).42(C2xC8) = C4xC32:4C8φ: C2xC8/C2xC4C2 ⊆ Aut C3xC6288(C3xC6).42(C2xC8)288,277
(C3xC6).43(C2xC8) = C12.57D12φ: C2xC8/C2xC4C2 ⊆ Aut C3xC6288(C3xC6).43(C2xC8)288,279
(C3xC6).44(C2xC8) = C2xC24.S3φ: C2xC8/C2xC4C2 ⊆ Aut C3xC6288(C3xC6).44(C2xC8)288,286
(C3xC6).45(C2xC8) = C24.94D6φ: C2xC8/C2xC4C2 ⊆ Aut C3xC6144(C3xC6).45(C2xC8)288,287
(C3xC6).46(C2xC8) = C62:7C8φ: C2xC8/C2xC4C2 ⊆ Aut C3xC6144(C3xC6).46(C2xC8)288,305
(C3xC6).47(C2xC8) = C32xC22:C8central extension (φ=1)144(C3xC6).47(C2xC8)288,316
(C3xC6).48(C2xC8) = C32xC4:C8central extension (φ=1)288(C3xC6).48(C2xC8)288,323
(C3xC6).49(C2xC8) = C32xM5(2)central extension (φ=1)144(C3xC6).49(C2xC8)288,328

׿
x
:
Z
F
o
wr
Q
<