Extensions 1→N→G→Q→1 with N=C2xC6 and Q=C3xD4

Direct product G=NxQ with N=C2xC6 and Q=C3xD4
dρLabelID
D4xC62144D4xC6^2288,1019

Semidirect products G=N:Q with N=C2xC6 and Q=C3xD4
extensionφ:Q→Aut NdρLabelID
(C2xC6):1(C3xD4) = A4xD12φ: C3xD4/C4C6 ⊆ Aut C2xC6366+(C2xC6):1(C3xD4)288,920
(C2xC6):2(C3xD4) = A4xC3:D4φ: C3xD4/C22C6 ⊆ Aut C2xC6366(C2xC6):2(C3xD4)288,928
(C2xC6):3(C3xD4) = C3xD6:D4φ: C3xD4/C6C22 ⊆ Aut C2xC648(C2xC6):3(C3xD4)288,653
(C2xC6):4(C3xD4) = C3xC23:2D6φ: C3xD4/C6C22 ⊆ Aut C2xC648(C2xC6):4(C3xD4)288,708
(C2xC6):5(C3xD4) = C3xC23.14D6φ: C3xD4/C6C22 ⊆ Aut C2xC648(C2xC6):5(C3xD4)288,710
(C2xC6):6(C3xD4) = C3xD4xA4φ: C3xD4/D4C3 ⊆ Aut C2xC6366(C2xC6):6(C3xD4)288,980
(C2xC6):7(C3xD4) = C32xC4:D4φ: C3xD4/C12C2 ⊆ Aut C2xC6144(C2xC6):7(C3xD4)288,818
(C2xC6):8(C3xD4) = C3xC12:7D4φ: C3xD4/C12C2 ⊆ Aut C2xC648(C2xC6):8(C3xD4)288,701
(C2xC6):9(C3xD4) = C2xC6xD12φ: C3xD4/C12C2 ⊆ Aut C2xC696(C2xC6):9(C3xD4)288,990
(C2xC6):10(C3xD4) = C32xC22wrC2φ: C3xD4/C2xC6C2 ⊆ Aut C2xC672(C2xC6):10(C3xD4)288,817
(C2xC6):11(C3xD4) = C3xC24:4S3φ: C3xD4/C2xC6C2 ⊆ Aut C2xC624(C2xC6):11(C3xD4)288,724
(C2xC6):12(C3xD4) = C2xC6xC3:D4φ: C3xD4/C2xC6C2 ⊆ Aut C2xC648(C2xC6):12(C3xD4)288,1002

Non-split extensions G=N.Q with N=C2xC6 and Q=C3xD4
extensionφ:Q→Aut NdρLabelID
(C2xC6).1(C3xD4) = C3xC23.6D6φ: C3xD4/C6C22 ⊆ Aut C2xC6244(C2xC6).1(C3xD4)288,240
(C2xC6).2(C3xD4) = C3xD12:C4φ: C3xD4/C6C22 ⊆ Aut C2xC6484(C2xC6).2(C3xD4)288,259
(C2xC6).3(C3xD4) = C3xC23.7D6φ: C3xD4/C6C22 ⊆ Aut C2xC6244(C2xC6).3(C3xD4)288,268
(C2xC6).4(C3xD4) = C3xQ8:3Dic3φ: C3xD4/C6C22 ⊆ Aut C2xC6484(C2xC6).4(C3xD4)288,271
(C2xC6).5(C3xD4) = C3xC23.21D6φ: C3xD4/C6C22 ⊆ Aut C2xC648(C2xC6).5(C3xD4)288,657
(C2xC6).6(C3xD4) = C3xC8:D6φ: C3xD4/C6C22 ⊆ Aut C2xC6484(C2xC6).6(C3xD4)288,679
(C2xC6).7(C3xD4) = C3xC8.D6φ: C3xD4/C6C22 ⊆ Aut C2xC6484(C2xC6).7(C3xD4)288,680
(C2xC6).8(C3xD4) = C3xC23.23D6φ: C3xD4/C6C22 ⊆ Aut C2xC648(C2xC6).8(C3xD4)288,706
(C2xC6).9(C3xD4) = C3xD4:D6φ: C3xD4/C6C22 ⊆ Aut C2xC6484(C2xC6).9(C3xD4)288,720
(C2xC6).10(C3xD4) = C3xQ8.13D6φ: C3xD4/C6C22 ⊆ Aut C2xC6484(C2xC6).10(C3xD4)288,721
(C2xC6).11(C3xD4) = C3xQ8.14D6φ: C3xD4/C6C22 ⊆ Aut C2xC6484(C2xC6).11(C3xD4)288,722
(C2xC6).12(C3xD4) = D4xC3.A4φ: C3xD4/D4C3 ⊆ Aut C2xC6366(C2xC6).12(C3xD4)288,344
(C2xC6).13(C3xD4) = C9xC4:D4φ: C3xD4/C12C2 ⊆ Aut C2xC6144(C2xC6).13(C3xD4)288,171
(C2xC6).14(C3xD4) = C9xC4oD8φ: C3xD4/C12C2 ⊆ Aut C2xC61442(C2xC6).14(C3xD4)288,185
(C2xC6).15(C3xD4) = C32xC4oD8φ: C3xD4/C12C2 ⊆ Aut C2xC6144(C2xC6).15(C3xD4)288,832
(C2xC6).16(C3xD4) = C3xC2.Dic12φ: C3xD4/C12C2 ⊆ Aut C2xC696(C2xC6).16(C3xD4)288,250
(C2xC6).17(C3xD4) = C3xC8:Dic3φ: C3xD4/C12C2 ⊆ Aut C2xC696(C2xC6).17(C3xD4)288,251
(C2xC6).18(C3xD4) = C3xC24:1C4φ: C3xD4/C12C2 ⊆ Aut C2xC696(C2xC6).18(C3xD4)288,252
(C2xC6).19(C3xD4) = C3xC2.D24φ: C3xD4/C12C2 ⊆ Aut C2xC696(C2xC6).19(C3xD4)288,255
(C2xC6).20(C3xD4) = C6xC24:C2φ: C3xD4/C12C2 ⊆ Aut C2xC696(C2xC6).20(C3xD4)288,673
(C2xC6).21(C3xD4) = C6xD24φ: C3xD4/C12C2 ⊆ Aut C2xC696(C2xC6).21(C3xD4)288,674
(C2xC6).22(C3xD4) = C3xC4oD24φ: C3xD4/C12C2 ⊆ Aut C2xC6482(C2xC6).22(C3xD4)288,675
(C2xC6).23(C3xD4) = C6xDic12φ: C3xD4/C12C2 ⊆ Aut C2xC696(C2xC6).23(C3xD4)288,676
(C2xC6).24(C3xD4) = C6xC4:Dic3φ: C3xD4/C12C2 ⊆ Aut C2xC696(C2xC6).24(C3xD4)288,696
(C2xC6).25(C3xD4) = C9xC23:C4φ: C3xD4/C2xC6C2 ⊆ Aut C2xC6724(C2xC6).25(C3xD4)288,49
(C2xC6).26(C3xD4) = C9xC4wrC2φ: C3xD4/C2xC6C2 ⊆ Aut C2xC6722(C2xC6).26(C3xD4)288,54
(C2xC6).27(C3xD4) = C9xC22wrC2φ: C3xD4/C2xC6C2 ⊆ Aut C2xC672(C2xC6).27(C3xD4)288,170
(C2xC6).28(C3xD4) = C9xC22.D4φ: C3xD4/C2xC6C2 ⊆ Aut C2xC6144(C2xC6).28(C3xD4)288,173
(C2xC6).29(C3xD4) = C9xC8:C22φ: C3xD4/C2xC6C2 ⊆ Aut C2xC6724(C2xC6).29(C3xD4)288,186
(C2xC6).30(C3xD4) = C9xC8.C22φ: C3xD4/C2xC6C2 ⊆ Aut C2xC61444(C2xC6).30(C3xD4)288,187
(C2xC6).31(C3xD4) = C32xC23:C4φ: C3xD4/C2xC6C2 ⊆ Aut C2xC672(C2xC6).31(C3xD4)288,317
(C2xC6).32(C3xD4) = C32xC4wrC2φ: C3xD4/C2xC6C2 ⊆ Aut C2xC672(C2xC6).32(C3xD4)288,322
(C2xC6).33(C3xD4) = C32xC22.D4φ: C3xD4/C2xC6C2 ⊆ Aut C2xC6144(C2xC6).33(C3xD4)288,820
(C2xC6).34(C3xD4) = C32xC8:C22φ: C3xD4/C2xC6C2 ⊆ Aut C2xC672(C2xC6).34(C3xD4)288,833
(C2xC6).35(C3xD4) = C32xC8.C22φ: C3xD4/C2xC6C2 ⊆ Aut C2xC6144(C2xC6).35(C3xD4)288,834
(C2xC6).36(C3xD4) = C3xC42:4S3φ: C3xD4/C2xC6C2 ⊆ Aut C2xC6242(C2xC6).36(C3xD4)288,239
(C2xC6).37(C3xD4) = C3xC6.Q16φ: C3xD4/C2xC6C2 ⊆ Aut C2xC696(C2xC6).37(C3xD4)288,241
(C2xC6).38(C3xD4) = C3xC12.Q8φ: C3xD4/C2xC6C2 ⊆ Aut C2xC696(C2xC6).38(C3xD4)288,242
(C2xC6).39(C3xD4) = C3xC6.D8φ: C3xD4/C2xC6C2 ⊆ Aut C2xC696(C2xC6).39(C3xD4)288,243
(C2xC6).40(C3xD4) = C3xC6.SD16φ: C3xD4/C2xC6C2 ⊆ Aut C2xC696(C2xC6).40(C3xD4)288,244
(C2xC6).41(C3xD4) = C3xC6.C42φ: C3xD4/C2xC6C2 ⊆ Aut C2xC696(C2xC6).41(C3xD4)288,265
(C2xC6).42(C3xD4) = C3xD4:Dic3φ: C3xD4/C2xC6C2 ⊆ Aut C2xC648(C2xC6).42(C3xD4)288,266
(C2xC6).43(C3xD4) = C3xQ8:2Dic3φ: C3xD4/C2xC6C2 ⊆ Aut C2xC696(C2xC6).43(C3xD4)288,269
(C2xC6).44(C3xD4) = C6xDic3:C4φ: C3xD4/C2xC6C2 ⊆ Aut C2xC696(C2xC6).44(C3xD4)288,694
(C2xC6).45(C3xD4) = C6xD6:C4φ: C3xD4/C2xC6C2 ⊆ Aut C2xC696(C2xC6).45(C3xD4)288,698
(C2xC6).46(C3xD4) = C3xC23.28D6φ: C3xD4/C2xC6C2 ⊆ Aut C2xC648(C2xC6).46(C3xD4)288,700
(C2xC6).47(C3xD4) = C6xD4:S3φ: C3xD4/C2xC6C2 ⊆ Aut C2xC648(C2xC6).47(C3xD4)288,702
(C2xC6).48(C3xD4) = C3xD12:6C22φ: C3xD4/C2xC6C2 ⊆ Aut C2xC6244(C2xC6).48(C3xD4)288,703
(C2xC6).49(C3xD4) = C6xD4.S3φ: C3xD4/C2xC6C2 ⊆ Aut C2xC648(C2xC6).49(C3xD4)288,704
(C2xC6).50(C3xD4) = C6xQ8:2S3φ: C3xD4/C2xC6C2 ⊆ Aut C2xC696(C2xC6).50(C3xD4)288,712
(C2xC6).51(C3xD4) = C3xQ8.11D6φ: C3xD4/C2xC6C2 ⊆ Aut C2xC6484(C2xC6).51(C3xD4)288,713
(C2xC6).52(C3xD4) = C6xC3:Q16φ: C3xD4/C2xC6C2 ⊆ Aut C2xC696(C2xC6).52(C3xD4)288,714
(C2xC6).53(C3xD4) = C6xC6.D4φ: C3xD4/C2xC6C2 ⊆ Aut C2xC648(C2xC6).53(C3xD4)288,723
(C2xC6).54(C3xD4) = C9xC2.C42central extension (φ=1)288(C2xC6).54(C3xD4)288,45
(C2xC6).55(C3xD4) = C9xD4:C4central extension (φ=1)144(C2xC6).55(C3xD4)288,52
(C2xC6).56(C3xD4) = C9xQ8:C4central extension (φ=1)288(C2xC6).56(C3xD4)288,53
(C2xC6).57(C3xD4) = C9xC4.Q8central extension (φ=1)288(C2xC6).57(C3xD4)288,56
(C2xC6).58(C3xD4) = C9xC2.D8central extension (φ=1)288(C2xC6).58(C3xD4)288,57
(C2xC6).59(C3xD4) = C22:C4xC18central extension (φ=1)144(C2xC6).59(C3xD4)288,165
(C2xC6).60(C3xD4) = C4:C4xC18central extension (φ=1)288(C2xC6).60(C3xD4)288,166
(C2xC6).61(C3xD4) = D8xC18central extension (φ=1)144(C2xC6).61(C3xD4)288,182
(C2xC6).62(C3xD4) = SD16xC18central extension (φ=1)144(C2xC6).62(C3xD4)288,183
(C2xC6).63(C3xD4) = Q16xC18central extension (φ=1)288(C2xC6).63(C3xD4)288,184
(C2xC6).64(C3xD4) = C32xC2.C42central extension (φ=1)288(C2xC6).64(C3xD4)288,313
(C2xC6).65(C3xD4) = C32xD4:C4central extension (φ=1)144(C2xC6).65(C3xD4)288,320
(C2xC6).66(C3xD4) = C32xQ8:C4central extension (φ=1)288(C2xC6).66(C3xD4)288,321
(C2xC6).67(C3xD4) = C32xC4.Q8central extension (φ=1)288(C2xC6).67(C3xD4)288,324
(C2xC6).68(C3xD4) = C32xC2.D8central extension (φ=1)288(C2xC6).68(C3xD4)288,325
(C2xC6).69(C3xD4) = D4xC2xC18central extension (φ=1)144(C2xC6).69(C3xD4)288,368
(C2xC6).70(C3xD4) = C22:C4xC3xC6central extension (φ=1)144(C2xC6).70(C3xD4)288,812
(C2xC6).71(C3xD4) = C4:C4xC3xC6central extension (φ=1)288(C2xC6).71(C3xD4)288,813
(C2xC6).72(C3xD4) = D8xC3xC6central extension (φ=1)144(C2xC6).72(C3xD4)288,829
(C2xC6).73(C3xD4) = SD16xC3xC6central extension (φ=1)144(C2xC6).73(C3xD4)288,830
(C2xC6).74(C3xD4) = Q16xC3xC6central extension (φ=1)288(C2xC6).74(C3xD4)288,831

׿
x
:
Z
F
o
wr
Q
<