extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC6).1(C3xD4) = C3xC23.6D6 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC6 | 24 | 4 | (C2xC6).1(C3xD4) | 288,240 |
(C2xC6).2(C3xD4) = C3xD12:C4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).2(C3xD4) | 288,259 |
(C2xC6).3(C3xD4) = C3xC23.7D6 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC6 | 24 | 4 | (C2xC6).3(C3xD4) | 288,268 |
(C2xC6).4(C3xD4) = C3xQ8:3Dic3 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).4(C3xD4) | 288,271 |
(C2xC6).5(C3xD4) = C3xC23.21D6 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).5(C3xD4) | 288,657 |
(C2xC6).6(C3xD4) = C3xC8:D6 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).6(C3xD4) | 288,679 |
(C2xC6).7(C3xD4) = C3xC8.D6 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).7(C3xD4) | 288,680 |
(C2xC6).8(C3xD4) = C3xC23.23D6 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).8(C3xD4) | 288,706 |
(C2xC6).9(C3xD4) = C3xD4:D6 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).9(C3xD4) | 288,720 |
(C2xC6).10(C3xD4) = C3xQ8.13D6 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).10(C3xD4) | 288,721 |
(C2xC6).11(C3xD4) = C3xQ8.14D6 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).11(C3xD4) | 288,722 |
(C2xC6).12(C3xD4) = D4xC3.A4 | φ: C3xD4/D4 → C3 ⊆ Aut C2xC6 | 36 | 6 | (C2xC6).12(C3xD4) | 288,344 |
(C2xC6).13(C3xD4) = C9xC4:D4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).13(C3xD4) | 288,171 |
(C2xC6).14(C3xD4) = C9xC4oD8 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC6 | 144 | 2 | (C2xC6).14(C3xD4) | 288,185 |
(C2xC6).15(C3xD4) = C32xC4oD8 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).15(C3xD4) | 288,832 |
(C2xC6).16(C3xD4) = C3xC2.Dic12 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).16(C3xD4) | 288,250 |
(C2xC6).17(C3xD4) = C3xC8:Dic3 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).17(C3xD4) | 288,251 |
(C2xC6).18(C3xD4) = C3xC24:1C4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).18(C3xD4) | 288,252 |
(C2xC6).19(C3xD4) = C3xC2.D24 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).19(C3xD4) | 288,255 |
(C2xC6).20(C3xD4) = C6xC24:C2 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).20(C3xD4) | 288,673 |
(C2xC6).21(C3xD4) = C6xD24 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).21(C3xD4) | 288,674 |
(C2xC6).22(C3xD4) = C3xC4oD24 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC6 | 48 | 2 | (C2xC6).22(C3xD4) | 288,675 |
(C2xC6).23(C3xD4) = C6xDic12 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).23(C3xD4) | 288,676 |
(C2xC6).24(C3xD4) = C6xC4:Dic3 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).24(C3xD4) | 288,696 |
(C2xC6).25(C3xD4) = C9xC23:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 72 | 4 | (C2xC6).25(C3xD4) | 288,49 |
(C2xC6).26(C3xD4) = C9xC4wrC2 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 72 | 2 | (C2xC6).26(C3xD4) | 288,54 |
(C2xC6).27(C3xD4) = C9xC22wrC2 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).27(C3xD4) | 288,170 |
(C2xC6).28(C3xD4) = C9xC22.D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).28(C3xD4) | 288,173 |
(C2xC6).29(C3xD4) = C9xC8:C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 72 | 4 | (C2xC6).29(C3xD4) | 288,186 |
(C2xC6).30(C3xD4) = C9xC8.C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 144 | 4 | (C2xC6).30(C3xD4) | 288,187 |
(C2xC6).31(C3xD4) = C32xC23:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).31(C3xD4) | 288,317 |
(C2xC6).32(C3xD4) = C32xC4wrC2 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).32(C3xD4) | 288,322 |
(C2xC6).33(C3xD4) = C32xC22.D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).33(C3xD4) | 288,820 |
(C2xC6).34(C3xD4) = C32xC8:C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).34(C3xD4) | 288,833 |
(C2xC6).35(C3xD4) = C32xC8.C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).35(C3xD4) | 288,834 |
(C2xC6).36(C3xD4) = C3xC42:4S3 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 24 | 2 | (C2xC6).36(C3xD4) | 288,239 |
(C2xC6).37(C3xD4) = C3xC6.Q16 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).37(C3xD4) | 288,241 |
(C2xC6).38(C3xD4) = C3xC12.Q8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).38(C3xD4) | 288,242 |
(C2xC6).39(C3xD4) = C3xC6.D8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).39(C3xD4) | 288,243 |
(C2xC6).40(C3xD4) = C3xC6.SD16 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).40(C3xD4) | 288,244 |
(C2xC6).41(C3xD4) = C3xC6.C42 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).41(C3xD4) | 288,265 |
(C2xC6).42(C3xD4) = C3xD4:Dic3 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).42(C3xD4) | 288,266 |
(C2xC6).43(C3xD4) = C3xQ8:2Dic3 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).43(C3xD4) | 288,269 |
(C2xC6).44(C3xD4) = C6xDic3:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).44(C3xD4) | 288,694 |
(C2xC6).45(C3xD4) = C6xD6:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).45(C3xD4) | 288,698 |
(C2xC6).46(C3xD4) = C3xC23.28D6 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).46(C3xD4) | 288,700 |
(C2xC6).47(C3xD4) = C6xD4:S3 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).47(C3xD4) | 288,702 |
(C2xC6).48(C3xD4) = C3xD12:6C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 24 | 4 | (C2xC6).48(C3xD4) | 288,703 |
(C2xC6).49(C3xD4) = C6xD4.S3 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).49(C3xD4) | 288,704 |
(C2xC6).50(C3xD4) = C6xQ8:2S3 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).50(C3xD4) | 288,712 |
(C2xC6).51(C3xD4) = C3xQ8.11D6 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).51(C3xD4) | 288,713 |
(C2xC6).52(C3xD4) = C6xC3:Q16 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).52(C3xD4) | 288,714 |
(C2xC6).53(C3xD4) = C6xC6.D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).53(C3xD4) | 288,723 |
(C2xC6).54(C3xD4) = C9xC2.C42 | central extension (φ=1) | 288 | | (C2xC6).54(C3xD4) | 288,45 |
(C2xC6).55(C3xD4) = C9xD4:C4 | central extension (φ=1) | 144 | | (C2xC6).55(C3xD4) | 288,52 |
(C2xC6).56(C3xD4) = C9xQ8:C4 | central extension (φ=1) | 288 | | (C2xC6).56(C3xD4) | 288,53 |
(C2xC6).57(C3xD4) = C9xC4.Q8 | central extension (φ=1) | 288 | | (C2xC6).57(C3xD4) | 288,56 |
(C2xC6).58(C3xD4) = C9xC2.D8 | central extension (φ=1) | 288 | | (C2xC6).58(C3xD4) | 288,57 |
(C2xC6).59(C3xD4) = C22:C4xC18 | central extension (φ=1) | 144 | | (C2xC6).59(C3xD4) | 288,165 |
(C2xC6).60(C3xD4) = C4:C4xC18 | central extension (φ=1) | 288 | | (C2xC6).60(C3xD4) | 288,166 |
(C2xC6).61(C3xD4) = D8xC18 | central extension (φ=1) | 144 | | (C2xC6).61(C3xD4) | 288,182 |
(C2xC6).62(C3xD4) = SD16xC18 | central extension (φ=1) | 144 | | (C2xC6).62(C3xD4) | 288,183 |
(C2xC6).63(C3xD4) = Q16xC18 | central extension (φ=1) | 288 | | (C2xC6).63(C3xD4) | 288,184 |
(C2xC6).64(C3xD4) = C32xC2.C42 | central extension (φ=1) | 288 | | (C2xC6).64(C3xD4) | 288,313 |
(C2xC6).65(C3xD4) = C32xD4:C4 | central extension (φ=1) | 144 | | (C2xC6).65(C3xD4) | 288,320 |
(C2xC6).66(C3xD4) = C32xQ8:C4 | central extension (φ=1) | 288 | | (C2xC6).66(C3xD4) | 288,321 |
(C2xC6).67(C3xD4) = C32xC4.Q8 | central extension (φ=1) | 288 | | (C2xC6).67(C3xD4) | 288,324 |
(C2xC6).68(C3xD4) = C32xC2.D8 | central extension (φ=1) | 288 | | (C2xC6).68(C3xD4) | 288,325 |
(C2xC6).69(C3xD4) = D4xC2xC18 | central extension (φ=1) | 144 | | (C2xC6).69(C3xD4) | 288,368 |
(C2xC6).70(C3xD4) = C22:C4xC3xC6 | central extension (φ=1) | 144 | | (C2xC6).70(C3xD4) | 288,812 |
(C2xC6).71(C3xD4) = C4:C4xC3xC6 | central extension (φ=1) | 288 | | (C2xC6).71(C3xD4) | 288,813 |
(C2xC6).72(C3xD4) = D8xC3xC6 | central extension (φ=1) | 144 | | (C2xC6).72(C3xD4) | 288,829 |
(C2xC6).73(C3xD4) = SD16xC3xC6 | central extension (φ=1) | 144 | | (C2xC6).73(C3xD4) | 288,830 |
(C2xC6).74(C3xD4) = Q16xC3xC6 | central extension (φ=1) | 288 | | (C2xC6).74(C3xD4) | 288,831 |