# Extensions 1→N→G→Q→1 with N=S3×C6 and Q=C23

Direct product G=N×Q with N=S3×C6 and Q=C23
dρLabelID
S3×C23×C696S3xC2^3xC6288,1043

Semidirect products G=N:Q with N=S3×C6 and Q=C23
extensionφ:Q→Out NdρLabelID
(S3×C6)⋊1C23 = C2×S3×D12φ: C23/C2C22 ⊆ Out S3×C648(S3xC6):1C2^3288,951
(S3×C6)⋊2C23 = C2×D6⋊D6φ: C23/C2C22 ⊆ Out S3×C648(S3xC6):2C2^3288,952
(S3×C6)⋊3C23 = S32×D4φ: C23/C2C22 ⊆ Out S3×C6248+(S3xC6):3C2^3288,958
(S3×C6)⋊4C23 = C2×S3×C3⋊D4φ: C23/C2C22 ⊆ Out S3×C648(S3xC6):4C2^3288,976
(S3×C6)⋊5C23 = C2×Dic3⋊D6φ: C23/C2C22 ⊆ Out S3×C624(S3xC6):5C2^3288,977
(S3×C6)⋊6C23 = C22×D6⋊S3φ: C23/C22C2 ⊆ Out S3×C696(S3xC6):6C2^3288,973
(S3×C6)⋊7C23 = C22×C3⋊D12φ: C23/C22C2 ⊆ Out S3×C648(S3xC6):7C2^3288,974
(S3×C6)⋊8C23 = C2×C6×D12φ: C23/C22C2 ⊆ Out S3×C696(S3xC6):8C2^3288,990
(S3×C6)⋊9C23 = S3×C6×D4φ: C23/C22C2 ⊆ Out S3×C648(S3xC6):9C2^3288,992
(S3×C6)⋊10C23 = C2×C6×C3⋊D4φ: C23/C22C2 ⊆ Out S3×C648(S3xC6):10C2^3288,1002
(S3×C6)⋊11C23 = S32×C23φ: C23/C22C2 ⊆ Out S3×C648(S3xC6):11C2^3288,1040

Non-split extensions G=N.Q with N=S3×C6 and Q=C23
extensionφ:Q→Out NdρLabelID
(S3×C6).1C23 = C2×D12⋊S3φ: C23/C2C22 ⊆ Out S3×C648(S3xC6).1C2^3288,944
(S3×C6).2C23 = D12.33D6φ: C23/C2C22 ⊆ Out S3×C6484(S3xC6).2C2^3288,945
(S3×C6).3C23 = D12.34D6φ: C23/C2C22 ⊆ Out S3×C6484-(S3xC6).3C2^3288,946
(S3×C6).4C23 = S3×C4○D12φ: C23/C2C22 ⊆ Out S3×C6484(S3xC6).4C2^3288,953
(S3×C6).5C23 = D1223D6φ: C23/C2C22 ⊆ Out S3×C6244(S3xC6).5C2^3288,954
(S3×C6).6C23 = D1224D6φ: C23/C2C22 ⊆ Out S3×C6484(S3xC6).6C2^3288,955
(S3×C6).7C23 = D1227D6φ: C23/C2C22 ⊆ Out S3×C6244+(S3xC6).7C2^3288,956
(S3×C6).8C23 = Dic6.24D6φ: C23/C2C22 ⊆ Out S3×C6488-(S3xC6).8C2^3288,957
(S3×C6).9C23 = S3×D42S3φ: C23/C2C22 ⊆ Out S3×C6488-(S3xC6).9C2^3288,959
(S3×C6).10C23 = Dic612D6φ: C23/C2C22 ⊆ Out S3×C6248+(S3xC6).10C2^3288,960
(S3×C6).11C23 = D1212D6φ: C23/C2C22 ⊆ Out S3×C6488-(S3xC6).11C2^3288,961
(S3×C6).12C23 = D1213D6φ: C23/C2C22 ⊆ Out S3×C6248+(S3xC6).12C2^3288,962
(S3×C6).13C23 = S3×Q83S3φ: C23/C2C22 ⊆ Out S3×C6488+(S3xC6).13C2^3288,966
(S3×C6).14C23 = D1215D6φ: C23/C2C22 ⊆ Out S3×C6488-(S3xC6).14C2^3288,967
(S3×C6).15C23 = D1216D6φ: C23/C2C22 ⊆ Out S3×C6488+(S3xC6).15C2^3288,968
(S3×C6).16C23 = C2×D6.3D6φ: C23/C2C22 ⊆ Out S3×C648(S3xC6).16C2^3288,970
(S3×C6).17C23 = C2×D6.4D6φ: C23/C2C22 ⊆ Out S3×C648(S3xC6).17C2^3288,971
(S3×C6).18C23 = C32⋊2+ 1+4φ: C23/C2C22 ⊆ Out S3×C6244(S3xC6).18C2^3288,978
(S3×C6).19C23 = C2×S3×Dic6φ: C23/C22C2 ⊆ Out S3×C696(S3xC6).19C2^3288,942
(S3×C6).20C23 = C2×D125S3φ: C23/C22C2 ⊆ Out S3×C696(S3xC6).20C2^3288,943
(S3×C6).21C23 = C2×D6.D6φ: C23/C22C2 ⊆ Out S3×C648(S3xC6).21C2^3288,948
(S3×C6).22C23 = C2×D6.6D6φ: C23/C22C2 ⊆ Out S3×C648(S3xC6).22C2^3288,949
(S3×C6).23C23 = S32×C2×C4φ: C23/C22C2 ⊆ Out S3×C648(S3xC6).23C2^3288,950
(S3×C6).24C23 = D12.25D6φ: C23/C22C2 ⊆ Out S3×C6488-(S3xC6).24C2^3288,963
(S3×C6).25C23 = Dic6.26D6φ: C23/C22C2 ⊆ Out S3×C6488+(S3xC6).25C2^3288,964
(S3×C6).26C23 = S32×Q8φ: C23/C22C2 ⊆ Out S3×C6488-(S3xC6).26C2^3288,965
(S3×C6).27C23 = C22×S3×Dic3φ: C23/C22C2 ⊆ Out S3×C696(S3xC6).27C2^3288,969
(S3×C6).28C23 = C6×C4○D12φ: C23/C22C2 ⊆ Out S3×C648(S3xC6).28C2^3288,991
(S3×C6).29C23 = C6×D42S3φ: C23/C22C2 ⊆ Out S3×C648(S3xC6).29C2^3288,993
(S3×C6).30C23 = C3×D46D6φ: C23/C22C2 ⊆ Out S3×C6244(S3xC6).30C2^3288,994
(S3×C6).31C23 = C6×Q83S3φ: C23/C22C2 ⊆ Out S3×C696(S3xC6).31C2^3288,996
(S3×C6).32C23 = C3×Q8.15D6φ: C23/C22C2 ⊆ Out S3×C6484(S3xC6).32C2^3288,997
(S3×C6).33C23 = C3×S3×C4○D4φ: C23/C22C2 ⊆ Out S3×C6484(S3xC6).33C2^3288,998
(S3×C6).34C23 = C3×D4○D12φ: C23/C22C2 ⊆ Out S3×C6484(S3xC6).34C2^3288,999
(S3×C6).35C23 = C3×Q8○D12φ: C23/C22C2 ⊆ Out S3×C6484(S3xC6).35C2^3288,1000
(S3×C6).36C23 = S3×C22×C12φ: trivial image96(S3xC6).36C2^3288,989
(S3×C6).37C23 = S3×C6×Q8φ: trivial image96(S3xC6).37C2^3288,995

׿
×
𝔽