| extension | φ:Q→Aut N | d | ρ | Label | ID | 
| C6.1(C2×S4) = CSU2(𝔽3)⋊S3 | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 96 | 4 | C6.1(C2xS4) | 288,844 | 
| C6.2(C2×S4) = Dic3.4S4 | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 48 | 4 | C6.2(C2xS4) | 288,845 | 
| C6.3(C2×S4) = Dic3.5S4 | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 48 | 4+ | C6.3(C2xS4) | 288,846 | 
| C6.4(C2×S4) = GL2(𝔽3)⋊S3 | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 48 | 4+ | C6.4(C2xS4) | 288,847 | 
| C6.5(C2×S4) = S3×CSU2(𝔽3) | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 48 | 4- | C6.5(C2xS4) | 288,848 | 
| C6.6(C2×S4) = D6.S4 | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 48 | 4- | C6.6(C2xS4) | 288,849 | 
| C6.7(C2×S4) = D6.2S4 | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 48 | 4 | C6.7(C2xS4) | 288,850 | 
| C6.8(C2×S4) = S3×GL2(𝔽3) | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 24 | 4 | C6.8(C2xS4) | 288,851 | 
| C6.9(C2×S4) = Dic3.S4 | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 72 | 6- | C6.9(C2xS4) | 288,852 | 
| C6.10(C2×S4) = Dic3×S4 | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 36 | 6- | C6.10(C2xS4) | 288,853 | 
| C6.11(C2×S4) = Dic3⋊2S4 | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 36 | 6 | C6.11(C2xS4) | 288,854 | 
| C6.12(C2×S4) = Dic3⋊S4 | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 36 | 6 | C6.12(C2xS4) | 288,855 | 
| C6.13(C2×S4) = S3×A4⋊C4 | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 36 | 6 | C6.13(C2xS4) | 288,856 | 
| C6.14(C2×S4) = D6⋊S4 | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 36 | 6 | C6.14(C2xS4) | 288,857 | 
| C6.15(C2×S4) = A4⋊D12 | φ: C2×S4/S4 → C2 ⊆ Aut C6 | 36 | 6+ | C6.15(C2xS4) | 288,858 | 
| C6.16(C2×S4) = C12.1S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 72 | 6- | C6.16(C2xS4) | 288,332 | 
| C6.17(C2×S4) = C4×C3.S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 36 | 6 | C6.17(C2xS4) | 288,333 | 
| C6.18(C2×S4) = C22⋊D36 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 36 | 6+ | C6.18(C2xS4) | 288,334 | 
| C6.19(C2×S4) = C2×Q8.D9 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 288 |  | C6.19(C2xS4) | 288,335 | 
| C6.20(C2×S4) = C2×Q8⋊D9 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 144 |  | C6.20(C2xS4) | 288,336 | 
| C6.21(C2×S4) = Q8.D18 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 144 | 4 | C6.21(C2xS4) | 288,337 | 
| C6.22(C2×S4) = C12.3S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 144 | 4- | C6.22(C2xS4) | 288,338 | 
| C6.23(C2×S4) = C12.11S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 144 | 4 | C6.23(C2xS4) | 288,339 | 
| C6.24(C2×S4) = C12.4S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 72 | 4+ | C6.24(C2xS4) | 288,340 | 
| C6.25(C2×S4) = C2×C6.S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 72 |  | C6.25(C2xS4) | 288,341 | 
| C6.26(C2×S4) = C23.D18 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 36 | 6 | C6.26(C2xS4) | 288,342 | 
| C6.27(C2×S4) = C22×C3.S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 36 |  | C6.27(C2xS4) | 288,835 | 
| C6.28(C2×S4) = A4⋊Dic6 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 72 | 6- | C6.28(C2xS4) | 288,907 | 
| C6.29(C2×S4) = C4×C3⋊S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 36 | 6 | C6.29(C2xS4) | 288,908 | 
| C6.30(C2×S4) = C12⋊S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 36 | 6+ | C6.30(C2xS4) | 288,909 | 
| C6.31(C2×S4) = C2×C6.5S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 96 |  | C6.31(C2xS4) | 288,910 | 
| C6.32(C2×S4) = C2×C6.6S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 48 |  | C6.32(C2xS4) | 288,911 | 
| C6.33(C2×S4) = SL2(𝔽3).D6 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 48 | 4 | C6.33(C2xS4) | 288,912 | 
| C6.34(C2×S4) = C12.6S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 96 | 4- | C6.34(C2xS4) | 288,913 | 
| C6.35(C2×S4) = C12.14S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 48 | 4 | C6.35(C2xS4) | 288,914 | 
| C6.36(C2×S4) = C12.7S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 48 | 4+ | C6.36(C2xS4) | 288,915 | 
| C6.37(C2×S4) = C2×C6.7S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 72 |  | C6.37(C2xS4) | 288,916 | 
| C6.38(C2×S4) = (C2×C6)⋊4S4 | φ: C2×S4/C2×A4 → C2 ⊆ Aut C6 | 36 | 6 | C6.38(C2xS4) | 288,917 | 
| C6.39(C2×S4) = C3×A4⋊Q8 | central extension (φ=1) | 72 | 6 | C6.39(C2xS4) | 288,896 | 
| C6.40(C2×S4) = C12×S4 | central extension (φ=1) | 36 | 3 | C6.40(C2xS4) | 288,897 | 
| C6.41(C2×S4) = C3×C4⋊S4 | central extension (φ=1) | 36 | 6 | C6.41(C2xS4) | 288,898 | 
| C6.42(C2×S4) = C6×CSU2(𝔽3) | central extension (φ=1) | 96 |  | C6.42(C2xS4) | 288,899 | 
| C6.43(C2×S4) = C6×GL2(𝔽3) | central extension (φ=1) | 48 |  | C6.43(C2xS4) | 288,900 | 
| C6.44(C2×S4) = C3×Q8.D6 | central extension (φ=1) | 48 | 4 | C6.44(C2xS4) | 288,901 | 
| C6.45(C2×S4) = C3×C4.S4 | central extension (φ=1) | 96 | 4 | C6.45(C2xS4) | 288,902 | 
| C6.46(C2×S4) = C3×C4.6S4 | central extension (φ=1) | 48 | 2 | C6.46(C2xS4) | 288,903 | 
| C6.47(C2×S4) = C3×C4.3S4 | central extension (φ=1) | 48 | 4 | C6.47(C2xS4) | 288,904 | 
| C6.48(C2×S4) = C6×A4⋊C4 | central extension (φ=1) | 72 |  | C6.48(C2xS4) | 288,905 | 
| C6.49(C2×S4) = C3×A4⋊D4 | central extension (φ=1) | 36 | 6 | C6.49(C2xS4) | 288,906 |