Extensions 1→N→G→Q→1 with N=C6 and Q=C2xS4

Direct product G=NxQ with N=C6 and Q=C2xS4
dρLabelID
C2xC6xS436C2xC6xS4288,1033

Semidirect products G=N:Q with N=C6 and Q=C2xS4
extensionφ:Q→Aut NdρLabelID
C6:1(C2xS4) = C2xS3xS4φ: C2xS4/S4C2 ⊆ Aut C6186+C6:1(C2xS4)288,1028
C6:2(C2xS4) = C22xC3:S4φ: C2xS4/C2xA4C2 ⊆ Aut C636C6:2(C2xS4)288,1034

Non-split extensions G=N.Q with N=C6 and Q=C2xS4
extensionφ:Q→Aut NdρLabelID
C6.1(C2xS4) = CSU2(F3):S3φ: C2xS4/S4C2 ⊆ Aut C6964C6.1(C2xS4)288,844
C6.2(C2xS4) = Dic3.4S4φ: C2xS4/S4C2 ⊆ Aut C6484C6.2(C2xS4)288,845
C6.3(C2xS4) = Dic3.5S4φ: C2xS4/S4C2 ⊆ Aut C6484+C6.3(C2xS4)288,846
C6.4(C2xS4) = GL2(F3):S3φ: C2xS4/S4C2 ⊆ Aut C6484+C6.4(C2xS4)288,847
C6.5(C2xS4) = S3xCSU2(F3)φ: C2xS4/S4C2 ⊆ Aut C6484-C6.5(C2xS4)288,848
C6.6(C2xS4) = D6.S4φ: C2xS4/S4C2 ⊆ Aut C6484-C6.6(C2xS4)288,849
C6.7(C2xS4) = D6.2S4φ: C2xS4/S4C2 ⊆ Aut C6484C6.7(C2xS4)288,850
C6.8(C2xS4) = S3xGL2(F3)φ: C2xS4/S4C2 ⊆ Aut C6244C6.8(C2xS4)288,851
C6.9(C2xS4) = Dic3.S4φ: C2xS4/S4C2 ⊆ Aut C6726-C6.9(C2xS4)288,852
C6.10(C2xS4) = Dic3xS4φ: C2xS4/S4C2 ⊆ Aut C6366-C6.10(C2xS4)288,853
C6.11(C2xS4) = Dic3:2S4φ: C2xS4/S4C2 ⊆ Aut C6366C6.11(C2xS4)288,854
C6.12(C2xS4) = Dic3:S4φ: C2xS4/S4C2 ⊆ Aut C6366C6.12(C2xS4)288,855
C6.13(C2xS4) = S3xA4:C4φ: C2xS4/S4C2 ⊆ Aut C6366C6.13(C2xS4)288,856
C6.14(C2xS4) = D6:S4φ: C2xS4/S4C2 ⊆ Aut C6366C6.14(C2xS4)288,857
C6.15(C2xS4) = A4:D12φ: C2xS4/S4C2 ⊆ Aut C6366+C6.15(C2xS4)288,858
C6.16(C2xS4) = C12.1S4φ: C2xS4/C2xA4C2 ⊆ Aut C6726-C6.16(C2xS4)288,332
C6.17(C2xS4) = C4xC3.S4φ: C2xS4/C2xA4C2 ⊆ Aut C6366C6.17(C2xS4)288,333
C6.18(C2xS4) = C22:D36φ: C2xS4/C2xA4C2 ⊆ Aut C6366+C6.18(C2xS4)288,334
C6.19(C2xS4) = C2xQ8.D9φ: C2xS4/C2xA4C2 ⊆ Aut C6288C6.19(C2xS4)288,335
C6.20(C2xS4) = C2xQ8:D9φ: C2xS4/C2xA4C2 ⊆ Aut C6144C6.20(C2xS4)288,336
C6.21(C2xS4) = Q8.D18φ: C2xS4/C2xA4C2 ⊆ Aut C61444C6.21(C2xS4)288,337
C6.22(C2xS4) = C12.3S4φ: C2xS4/C2xA4C2 ⊆ Aut C61444-C6.22(C2xS4)288,338
C6.23(C2xS4) = C12.11S4φ: C2xS4/C2xA4C2 ⊆ Aut C61444C6.23(C2xS4)288,339
C6.24(C2xS4) = C12.4S4φ: C2xS4/C2xA4C2 ⊆ Aut C6724+C6.24(C2xS4)288,340
C6.25(C2xS4) = C2xC6.S4φ: C2xS4/C2xA4C2 ⊆ Aut C672C6.25(C2xS4)288,341
C6.26(C2xS4) = C23.D18φ: C2xS4/C2xA4C2 ⊆ Aut C6366C6.26(C2xS4)288,342
C6.27(C2xS4) = C22xC3.S4φ: C2xS4/C2xA4C2 ⊆ Aut C636C6.27(C2xS4)288,835
C6.28(C2xS4) = A4:Dic6φ: C2xS4/C2xA4C2 ⊆ Aut C6726-C6.28(C2xS4)288,907
C6.29(C2xS4) = C4xC3:S4φ: C2xS4/C2xA4C2 ⊆ Aut C6366C6.29(C2xS4)288,908
C6.30(C2xS4) = C12:S4φ: C2xS4/C2xA4C2 ⊆ Aut C6366+C6.30(C2xS4)288,909
C6.31(C2xS4) = C2xC6.5S4φ: C2xS4/C2xA4C2 ⊆ Aut C696C6.31(C2xS4)288,910
C6.32(C2xS4) = C2xC6.6S4φ: C2xS4/C2xA4C2 ⊆ Aut C648C6.32(C2xS4)288,911
C6.33(C2xS4) = SL2(F3).D6φ: C2xS4/C2xA4C2 ⊆ Aut C6484C6.33(C2xS4)288,912
C6.34(C2xS4) = C12.6S4φ: C2xS4/C2xA4C2 ⊆ Aut C6964-C6.34(C2xS4)288,913
C6.35(C2xS4) = C12.14S4φ: C2xS4/C2xA4C2 ⊆ Aut C6484C6.35(C2xS4)288,914
C6.36(C2xS4) = C12.7S4φ: C2xS4/C2xA4C2 ⊆ Aut C6484+C6.36(C2xS4)288,915
C6.37(C2xS4) = C2xC6.7S4φ: C2xS4/C2xA4C2 ⊆ Aut C672C6.37(C2xS4)288,916
C6.38(C2xS4) = (C2xC6):4S4φ: C2xS4/C2xA4C2 ⊆ Aut C6366C6.38(C2xS4)288,917
C6.39(C2xS4) = C3xA4:Q8central extension (φ=1)726C6.39(C2xS4)288,896
C6.40(C2xS4) = C12xS4central extension (φ=1)363C6.40(C2xS4)288,897
C6.41(C2xS4) = C3xC4:S4central extension (φ=1)366C6.41(C2xS4)288,898
C6.42(C2xS4) = C6xCSU2(F3)central extension (φ=1)96C6.42(C2xS4)288,899
C6.43(C2xS4) = C6xGL2(F3)central extension (φ=1)48C6.43(C2xS4)288,900
C6.44(C2xS4) = C3xQ8.D6central extension (φ=1)484C6.44(C2xS4)288,901
C6.45(C2xS4) = C3xC4.S4central extension (φ=1)964C6.45(C2xS4)288,902
C6.46(C2xS4) = C3xC4.6S4central extension (φ=1)482C6.46(C2xS4)288,903
C6.47(C2xS4) = C3xC4.3S4central extension (φ=1)484C6.47(C2xS4)288,904
C6.48(C2xS4) = C6xA4:C4central extension (φ=1)72C6.48(C2xS4)288,905
C6.49(C2xS4) = C3xA4:D4central extension (φ=1)366C6.49(C2xS4)288,906

׿
x
:
Z
F
o
wr
Q
<