Copied to
clipboard

G = S3×CSU2(𝔽3)  order 288 = 25·32

Direct product of S3 and CSU2(𝔽3)

direct product, non-abelian, soluble

Aliases: S3×CSU2(𝔽3), D6.3S4, SL2(𝔽3).4D6, Q8.5S32, (S3×Q8).S3, C2.8(S3×S4), C6.5(C2×S4), (C3×Q8).5D6, C6.5S43C2, (S3×SL2(𝔽3)).C2, C31(C2×CSU2(𝔽3)), (C3×CSU2(𝔽3))⋊2C2, (C3×SL2(𝔽3)).4C22, SmallGroup(288,848)

Series: Derived Chief Lower central Upper central

C1C2Q8C3×SL2(𝔽3) — S3×CSU2(𝔽3)
C1C2Q8C3×Q8C3×SL2(𝔽3)S3×SL2(𝔽3) — S3×CSU2(𝔽3)
C3×SL2(𝔽3) — S3×CSU2(𝔽3)
C1C2

Generators and relations for S3×CSU2(𝔽3)
 G = < a,b,c,d,e,f | a3=b2=c4=e3=1, d2=f2=c2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd-1=fdf-1=c-1, ece-1=cd, fcf-1=c2d, ede-1=c, fef-1=e-1 >

Subgroups: 430 in 83 conjugacy classes, 17 normal (15 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, C2×C4, Q8, Q8, C32, Dic3, C12, D6, C2×C6, C2×C8, Q16, C2×Q8, C3×S3, C3×C6, C3⋊C8, C24, SL2(𝔽3), SL2(𝔽3), Dic6, C4×S3, C2×Dic3, C3×Q8, C3×Q8, C2×Q16, C3×Dic3, C3⋊Dic3, S3×C6, S3×C8, Dic12, C3⋊Q16, C3×Q16, CSU2(𝔽3), CSU2(𝔽3), C2×SL2(𝔽3), S3×Q8, S3×Q8, S3×Dic3, C3×SL2(𝔽3), S3×Q16, C2×CSU2(𝔽3), C3×CSU2(𝔽3), C6.5S4, S3×SL2(𝔽3), S3×CSU2(𝔽3)
Quotients: C1, C2, C22, S3, D6, S4, S32, CSU2(𝔽3), C2×S4, C2×CSU2(𝔽3), S3×S4, S3×CSU2(𝔽3)

Character table of S3×CSU2(𝔽3)

 class 12A2B2C3A3B3C4A4B4C4D6A6B6C6D6E8A8B8C8D12A12B24A24B
 size 1133281661218362816242466181812241212
ρ1111111111111111111111111    trivial
ρ211-1-11111-1-11111-1-1-1-1111-1-1-1    linear of order 2
ρ311111111-11-111111-1-1-1-11-1-1-1    linear of order 2
ρ411-1-111111-1-1111-1-111-1-11111    linear of order 2
ρ522222-1-120202-1-1-1-100002000    orthogonal lifted from S3
ρ62200-12-12-200-12-100-2-200-1111    orthogonal lifted from D6
ρ722-2-22-1-120-202-1-11100002000    orthogonal lifted from D6
ρ82200-12-12200-12-1002200-1-1-1-1    orthogonal lifted from S3
ρ92-22-22-1-10000-2111-12-2-22002-2    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ102-2-222-1-10000-211-11-22-2200-22    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ112-22-22-1-10000-2111-1-222-200-22    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ122-2-222-1-10000-211-112-22-2002-2    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ1333-3-3300-111-130000-1-111-11-1-1    orthogonal lifted from C2×S4
ρ143333300-1-1-1-1300001111-1-111    orthogonal lifted from S4
ρ1533-3-3300-1-1113000011-1-1-1-111    orthogonal lifted from C2×S4
ρ163333300-11-1130000-1-1-1-1-11-1-1    orthogonal lifted from S4
ρ174400-2-214000-2-21000000-2000    orthogonal lifted from S32
ρ184-4-444110000-4-1-11-100000000    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ194-44-44110000-4-1-1-1100000000    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ204-400-2-21000022-10022-220000-22    symplectic faithful, Schur index 2
ρ214-400-2-21000022-100-222200002-2    symplectic faithful, Schur index 2
ρ226600-300-2200-30000-2-2001-111    orthogonal lifted from S3×S4
ρ236600-300-2-200-30000220011-1-1    orthogonal lifted from S3×S4
ρ248-800-42-100004-210000000000    symplectic faithful, Schur index 2

Smallest permutation representation of S3×CSU2(𝔽3)
On 48 points
Generators in S48
(1 14 22)(2 15 23)(3 16 24)(4 13 21)(5 35 43)(6 36 44)(7 33 41)(8 34 42)(9 17 25)(10 18 26)(11 19 27)(12 20 28)(29 37 45)(30 38 46)(31 39 47)(32 40 48)
(5 43)(6 44)(7 41)(8 42)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)(19 27)(20 28)(37 45)(38 46)(39 47)(40 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 11 3 9)(2 10 4 12)(5 47 7 45)(6 46 8 48)(13 20 15 18)(14 19 16 17)(21 28 23 26)(22 27 24 25)(29 35 31 33)(30 34 32 36)(37 43 39 41)(38 42 40 44)
(2 11 10)(4 9 12)(5 8 46)(6 48 7)(13 17 20)(15 19 18)(21 25 28)(23 27 26)(30 35 34)(32 33 36)(38 43 42)(40 41 44)
(1 29 3 31)(2 33 4 35)(5 23 7 21)(6 28 8 26)(9 30 11 32)(10 36 12 34)(13 43 15 41)(14 37 16 39)(17 38 19 40)(18 44 20 42)(22 45 24 47)(25 46 27 48)

G:=sub<Sym(48)| (1,14,22)(2,15,23)(3,16,24)(4,13,21)(5,35,43)(6,36,44)(7,33,41)(8,34,42)(9,17,25)(10,18,26)(11,19,27)(12,20,28)(29,37,45)(30,38,46)(31,39,47)(32,40,48), (5,43)(6,44)(7,41)(8,42)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(37,45)(38,46)(39,47)(40,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,11,3,9)(2,10,4,12)(5,47,7,45)(6,46,8,48)(13,20,15,18)(14,19,16,17)(21,28,23,26)(22,27,24,25)(29,35,31,33)(30,34,32,36)(37,43,39,41)(38,42,40,44), (2,11,10)(4,9,12)(5,8,46)(6,48,7)(13,17,20)(15,19,18)(21,25,28)(23,27,26)(30,35,34)(32,33,36)(38,43,42)(40,41,44), (1,29,3,31)(2,33,4,35)(5,23,7,21)(6,28,8,26)(9,30,11,32)(10,36,12,34)(13,43,15,41)(14,37,16,39)(17,38,19,40)(18,44,20,42)(22,45,24,47)(25,46,27,48)>;

G:=Group( (1,14,22)(2,15,23)(3,16,24)(4,13,21)(5,35,43)(6,36,44)(7,33,41)(8,34,42)(9,17,25)(10,18,26)(11,19,27)(12,20,28)(29,37,45)(30,38,46)(31,39,47)(32,40,48), (5,43)(6,44)(7,41)(8,42)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(37,45)(38,46)(39,47)(40,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,11,3,9)(2,10,4,12)(5,47,7,45)(6,46,8,48)(13,20,15,18)(14,19,16,17)(21,28,23,26)(22,27,24,25)(29,35,31,33)(30,34,32,36)(37,43,39,41)(38,42,40,44), (2,11,10)(4,9,12)(5,8,46)(6,48,7)(13,17,20)(15,19,18)(21,25,28)(23,27,26)(30,35,34)(32,33,36)(38,43,42)(40,41,44), (1,29,3,31)(2,33,4,35)(5,23,7,21)(6,28,8,26)(9,30,11,32)(10,36,12,34)(13,43,15,41)(14,37,16,39)(17,38,19,40)(18,44,20,42)(22,45,24,47)(25,46,27,48) );

G=PermutationGroup([[(1,14,22),(2,15,23),(3,16,24),(4,13,21),(5,35,43),(6,36,44),(7,33,41),(8,34,42),(9,17,25),(10,18,26),(11,19,27),(12,20,28),(29,37,45),(30,38,46),(31,39,47),(32,40,48)], [(5,43),(6,44),(7,41),(8,42),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26),(19,27),(20,28),(37,45),(38,46),(39,47),(40,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,11,3,9),(2,10,4,12),(5,47,7,45),(6,46,8,48),(13,20,15,18),(14,19,16,17),(21,28,23,26),(22,27,24,25),(29,35,31,33),(30,34,32,36),(37,43,39,41),(38,42,40,44)], [(2,11,10),(4,9,12),(5,8,46),(6,48,7),(13,17,20),(15,19,18),(21,25,28),(23,27,26),(30,35,34),(32,33,36),(38,43,42),(40,41,44)], [(1,29,3,31),(2,33,4,35),(5,23,7,21),(6,28,8,26),(9,30,11,32),(10,36,12,34),(13,43,15,41),(14,37,16,39),(17,38,19,40),(18,44,20,42),(22,45,24,47),(25,46,27,48)]])

Matrix representation of S3×CSU2(𝔽3) in GL4(𝔽7) generated by

0052
5303
2503
5512
,
1002
1034
2503
0006
,
6111
1041
6632
5215
,
3012
1066
2253
1636
,
0052
2304
2203
5212
,
6205
0034
1135
1635
G:=sub<GL(4,GF(7))| [0,5,2,5,0,3,5,5,5,0,0,1,2,3,3,2],[1,1,2,0,0,0,5,0,0,3,0,0,2,4,3,6],[6,1,6,5,1,0,6,2,1,4,3,1,1,1,2,5],[3,1,2,1,0,0,2,6,1,6,5,3,2,6,3,6],[0,2,2,5,0,3,2,2,5,0,0,1,2,4,3,2],[6,0,1,1,2,0,1,6,0,3,3,3,5,4,5,5] >;

S3×CSU2(𝔽3) in GAP, Magma, Sage, TeX

S_3\times {\rm CSU}_2({\mathbb F}_3)
% in TeX

G:=Group("S3xCSU(2,3)");
// GroupNames label

G:=SmallGroup(288,848);
// by ID

G=gap.SmallGroup(288,848);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,2,-2,1016,93,675,1271,1908,172,768,1153,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^4=e^3=1,d^2=f^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=f*d*f^-1=c^-1,e*c*e^-1=c*d,f*c*f^-1=c^2*d,e*d*e^-1=c,f*e*f^-1=e^-1>;
// generators/relations

Export

Character table of S3×CSU2(𝔽3) in TeX

׿
×
𝔽