Copied to
clipboard

G = C12.3S4order 288 = 25·32

3rd non-split extension by C12 of S4 acting via S4/A4=C2

non-abelian, soluble

Aliases: C12.3S4, Q8.3D18, C6.22(C2×S4), C4○D4.2D9, Q8.D92C2, C4.2(C3.S4), C3.(C4.S4), (C3×Q8).11D6, Q8⋊C9.3C22, Q8.C18.1C2, C2.8(C2×C3.S4), (C3×C4○D4).2S3, SmallGroup(288,338)

Series: Derived Chief Lower central Upper central

C1C2Q8Q8⋊C9 — C12.3S4
C1C2Q8C3×Q8Q8⋊C9Q8.D9 — C12.3S4
Q8⋊C9 — C12.3S4
C1C2C4

Generators and relations for C12.3S4
 G = < a,b,c,d,e | a12=1, b2=c2=e2=a6, d3=a4, ab=ba, ac=ca, ad=da, eae-1=a-1, cbc-1=a6b, dbd-1=a6bc, ebe-1=bc, dcd-1=b, ece-1=a6c, ede-1=a8d2 >

Subgroups: 303 in 61 conjugacy classes, 15 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, C2×C4, D4, Q8, Q8, C9, Dic3, C12, C12, C2×C6, M4(2), SD16, Q16, C2×Q8, C4○D4, C18, C3⋊C8, Dic6, C2×Dic3, C2×C12, C3×D4, C3×Q8, C8.C22, Dic9, C36, C4.Dic3, D4.S3, C3⋊Q16, C2×Dic6, C3×C4○D4, Q8⋊C9, Dic18, Q8.14D6, Q8.D9, Q8.C18, C12.3S4
Quotients: C1, C2, C22, S3, D6, D9, S4, D18, C2×S4, C3.S4, C4.S4, C2×C3.S4, C12.3S4

Character table of C12.3S4

 class 12A2B34A4B4C4D6A6B8A8B9A9B9C12A12B12C18A18B18C36A36B36C36D36E36F
 size 116226363621236368882212888888888
ρ1111111111111111111111111111    trivial
ρ2111111-1-111-1-1111111111111111    linear of order 2
ρ311-11-111-11-1-11111-1-11111-1-1-1-1-1-1    linear of order 2
ρ411-11-11-111-11-1111-1-11111-1-1-1-1-1-1    linear of order 2
ρ522-22-22002-200-1-1-1-2-22-1-1-1111111    orthogonal lifted from D6
ρ6222222002200-1-1-1222-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ7222-12200-1-100ζ9792ζ9594ζ989-1-1-1ζ9792ζ9594ζ989ζ9792ζ9792ζ9594ζ9594ζ989ζ989    orthogonal lifted from D9
ρ822-2-1-2200-1100ζ9792ζ9594ζ98911-1ζ9792ζ9594ζ9899792979295949594989989    orthogonal lifted from D18
ρ922-2-1-2200-1100ζ9594ζ989ζ979211-1ζ9594ζ989ζ97929594959498998997929792    orthogonal lifted from D18
ρ1022-2-1-2200-1100ζ989ζ9792ζ959411-1ζ989ζ9792ζ95949899899792979295949594    orthogonal lifted from D18
ρ11222-12200-1-100ζ989ζ9792ζ9594-1-1-1ζ989ζ9792ζ9594ζ989ζ989ζ9792ζ9792ζ9594ζ9594    orthogonal lifted from D9
ρ12222-12200-1-100ζ9594ζ989ζ9792-1-1-1ζ9594ζ989ζ9792ζ9594ζ9594ζ989ζ989ζ9792ζ9792    orthogonal lifted from D9
ρ133313-3-1-1131-11000-3-3-1000000000    orthogonal lifted from C2×S4
ρ1433-133-1-1-13-11100033-1000000000    orthogonal lifted from S4
ρ1533-133-1113-1-1-100033-1000000000    orthogonal lifted from S4
ρ163313-3-11-1311-1000-3-3-1000000000    orthogonal lifted from C2×S4
ρ174-4040000-4000-2-2-2000222000000    symplectic lifted from C4.S4, Schur index 2
ρ184-4040000-4000111000-1-1-1-33-33-33    symplectic lifted from C4.S4, Schur index 2
ρ194-4040000-4000111000-1-1-13-33-33-3    symplectic lifted from C4.S4, Schur index 2
ρ204-40-20000200098997929594-23230ζ989ζ9792ζ959443ζ9843ζ9ζ43ζ9843ζ94ζ974ζ92ζ4ζ974ζ92ζ4ζ954ζ944ζ954ζ94    symplectic faithful, Schur index 2
ρ214-40-2000020009899792959423-230ζ989ζ9792ζ9594ζ43ζ9843ζ943ζ9843ζ9ζ4ζ974ζ924ζ974ζ924ζ954ζ94ζ4ζ954ζ94    symplectic faithful, Schur index 2
ρ224-40-20000200097929594989-23230ζ9792ζ9594ζ9894ζ974ζ92ζ4ζ974ζ92ζ4ζ954ζ944ζ954ζ9443ζ9843ζ9ζ43ζ9843ζ9    symplectic faithful, Schur index 2
ρ234-40-2000020009792959498923-230ζ9792ζ9594ζ989ζ4ζ974ζ924ζ974ζ924ζ954ζ94ζ4ζ954ζ94ζ43ζ9843ζ943ζ9843ζ9    symplectic faithful, Schur index 2
ρ244-40-2000020009594989979223-230ζ9594ζ989ζ97924ζ954ζ94ζ4ζ954ζ94ζ43ζ9843ζ943ζ9843ζ9ζ4ζ974ζ924ζ974ζ92    symplectic faithful, Schur index 2
ρ254-40-20000200095949899792-23230ζ9594ζ989ζ9792ζ4ζ954ζ944ζ954ζ9443ζ9843ζ9ζ43ζ9843ζ94ζ974ζ92ζ4ζ974ζ92    symplectic faithful, Schur index 2
ρ2666-2-36-200-3100000-3-31000000000    orthogonal lifted from C3.S4
ρ27662-3-6-200-3-100000331000000000    orthogonal lifted from C2×C3.S4

Smallest permutation representation of C12.3S4
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 10 7 4)(2 11 8 5)(3 12 9 6)(13 81 19 75)(14 82 20 76)(15 83 21 77)(16 84 22 78)(17 73 23 79)(18 74 24 80)(25 91 31 85)(26 92 32 86)(27 93 33 87)(28 94 34 88)(29 95 35 89)(30 96 36 90)(37 46 43 40)(38 47 44 41)(39 48 45 42)(49 122 55 128)(50 123 56 129)(51 124 57 130)(52 125 58 131)(53 126 59 132)(54 127 60 121)(61 64 67 70)(62 65 68 71)(63 66 69 72)(97 119 103 113)(98 120 104 114)(99 109 105 115)(100 110 106 116)(101 111 107 117)(102 112 108 118)(133 136 139 142)(134 137 140 143)(135 138 141 144)
(1 137 7 143)(2 138 8 144)(3 139 9 133)(4 140 10 134)(5 141 11 135)(6 142 12 136)(13 78 19 84)(14 79 20 73)(15 80 21 74)(16 81 22 75)(17 82 23 76)(18 83 24 77)(25 28 31 34)(26 29 32 35)(27 30 33 36)(37 70 43 64)(38 71 44 65)(39 72 45 66)(40 61 46 67)(41 62 47 68)(42 63 48 69)(49 131 55 125)(50 132 56 126)(51 121 57 127)(52 122 58 128)(53 123 59 129)(54 124 60 130)(85 94 91 88)(86 95 92 89)(87 96 93 90)(97 100 103 106)(98 101 104 107)(99 102 105 108)(109 118 115 112)(110 119 116 113)(111 120 117 114)
(1 86 131 5 90 123 9 94 127)(2 87 132 6 91 124 10 95 128)(3 88 121 7 92 125 11 96 129)(4 89 122 8 93 126 12 85 130)(13 62 105 17 66 97 21 70 101)(14 63 106 18 67 98 22 71 102)(15 64 107 19 68 99 23 72 103)(16 65 108 20 69 100 24 61 104)(25 54 143 29 58 135 33 50 139)(26 55 144 30 59 136 34 51 140)(27 56 133 31 60 137 35 52 141)(28 57 134 32 49 138 36 53 142)(37 120 75 41 112 79 45 116 83)(38 109 76 42 113 80 46 117 84)(39 110 77 43 114 81 47 118 73)(40 111 78 44 115 82 48 119 74)
(1 73 7 79)(2 84 8 78)(3 83 9 77)(4 82 10 76)(5 81 11 75)(6 80 12 74)(13 138 19 144)(14 137 20 143)(15 136 21 142)(16 135 22 141)(17 134 23 140)(18 133 24 139)(25 106 31 100)(26 105 32 99)(27 104 33 98)(28 103 34 97)(29 102 35 108)(30 101 36 107)(37 123 43 129)(38 122 44 128)(39 121 45 127)(40 132 46 126)(41 131 47 125)(42 130 48 124)(49 68 55 62)(50 67 56 61)(51 66 57 72)(52 65 58 71)(53 64 59 70)(54 63 60 69)(85 119 91 113)(86 118 92 112)(87 117 93 111)(88 116 94 110)(89 115 95 109)(90 114 96 120)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,10,7,4)(2,11,8,5)(3,12,9,6)(13,81,19,75)(14,82,20,76)(15,83,21,77)(16,84,22,78)(17,73,23,79)(18,74,24,80)(25,91,31,85)(26,92,32,86)(27,93,33,87)(28,94,34,88)(29,95,35,89)(30,96,36,90)(37,46,43,40)(38,47,44,41)(39,48,45,42)(49,122,55,128)(50,123,56,129)(51,124,57,130)(52,125,58,131)(53,126,59,132)(54,127,60,121)(61,64,67,70)(62,65,68,71)(63,66,69,72)(97,119,103,113)(98,120,104,114)(99,109,105,115)(100,110,106,116)(101,111,107,117)(102,112,108,118)(133,136,139,142)(134,137,140,143)(135,138,141,144), (1,137,7,143)(2,138,8,144)(3,139,9,133)(4,140,10,134)(5,141,11,135)(6,142,12,136)(13,78,19,84)(14,79,20,73)(15,80,21,74)(16,81,22,75)(17,82,23,76)(18,83,24,77)(25,28,31,34)(26,29,32,35)(27,30,33,36)(37,70,43,64)(38,71,44,65)(39,72,45,66)(40,61,46,67)(41,62,47,68)(42,63,48,69)(49,131,55,125)(50,132,56,126)(51,121,57,127)(52,122,58,128)(53,123,59,129)(54,124,60,130)(85,94,91,88)(86,95,92,89)(87,96,93,90)(97,100,103,106)(98,101,104,107)(99,102,105,108)(109,118,115,112)(110,119,116,113)(111,120,117,114), (1,86,131,5,90,123,9,94,127)(2,87,132,6,91,124,10,95,128)(3,88,121,7,92,125,11,96,129)(4,89,122,8,93,126,12,85,130)(13,62,105,17,66,97,21,70,101)(14,63,106,18,67,98,22,71,102)(15,64,107,19,68,99,23,72,103)(16,65,108,20,69,100,24,61,104)(25,54,143,29,58,135,33,50,139)(26,55,144,30,59,136,34,51,140)(27,56,133,31,60,137,35,52,141)(28,57,134,32,49,138,36,53,142)(37,120,75,41,112,79,45,116,83)(38,109,76,42,113,80,46,117,84)(39,110,77,43,114,81,47,118,73)(40,111,78,44,115,82,48,119,74), (1,73,7,79)(2,84,8,78)(3,83,9,77)(4,82,10,76)(5,81,11,75)(6,80,12,74)(13,138,19,144)(14,137,20,143)(15,136,21,142)(16,135,22,141)(17,134,23,140)(18,133,24,139)(25,106,31,100)(26,105,32,99)(27,104,33,98)(28,103,34,97)(29,102,35,108)(30,101,36,107)(37,123,43,129)(38,122,44,128)(39,121,45,127)(40,132,46,126)(41,131,47,125)(42,130,48,124)(49,68,55,62)(50,67,56,61)(51,66,57,72)(52,65,58,71)(53,64,59,70)(54,63,60,69)(85,119,91,113)(86,118,92,112)(87,117,93,111)(88,116,94,110)(89,115,95,109)(90,114,96,120)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,10,7,4)(2,11,8,5)(3,12,9,6)(13,81,19,75)(14,82,20,76)(15,83,21,77)(16,84,22,78)(17,73,23,79)(18,74,24,80)(25,91,31,85)(26,92,32,86)(27,93,33,87)(28,94,34,88)(29,95,35,89)(30,96,36,90)(37,46,43,40)(38,47,44,41)(39,48,45,42)(49,122,55,128)(50,123,56,129)(51,124,57,130)(52,125,58,131)(53,126,59,132)(54,127,60,121)(61,64,67,70)(62,65,68,71)(63,66,69,72)(97,119,103,113)(98,120,104,114)(99,109,105,115)(100,110,106,116)(101,111,107,117)(102,112,108,118)(133,136,139,142)(134,137,140,143)(135,138,141,144), (1,137,7,143)(2,138,8,144)(3,139,9,133)(4,140,10,134)(5,141,11,135)(6,142,12,136)(13,78,19,84)(14,79,20,73)(15,80,21,74)(16,81,22,75)(17,82,23,76)(18,83,24,77)(25,28,31,34)(26,29,32,35)(27,30,33,36)(37,70,43,64)(38,71,44,65)(39,72,45,66)(40,61,46,67)(41,62,47,68)(42,63,48,69)(49,131,55,125)(50,132,56,126)(51,121,57,127)(52,122,58,128)(53,123,59,129)(54,124,60,130)(85,94,91,88)(86,95,92,89)(87,96,93,90)(97,100,103,106)(98,101,104,107)(99,102,105,108)(109,118,115,112)(110,119,116,113)(111,120,117,114), (1,86,131,5,90,123,9,94,127)(2,87,132,6,91,124,10,95,128)(3,88,121,7,92,125,11,96,129)(4,89,122,8,93,126,12,85,130)(13,62,105,17,66,97,21,70,101)(14,63,106,18,67,98,22,71,102)(15,64,107,19,68,99,23,72,103)(16,65,108,20,69,100,24,61,104)(25,54,143,29,58,135,33,50,139)(26,55,144,30,59,136,34,51,140)(27,56,133,31,60,137,35,52,141)(28,57,134,32,49,138,36,53,142)(37,120,75,41,112,79,45,116,83)(38,109,76,42,113,80,46,117,84)(39,110,77,43,114,81,47,118,73)(40,111,78,44,115,82,48,119,74), (1,73,7,79)(2,84,8,78)(3,83,9,77)(4,82,10,76)(5,81,11,75)(6,80,12,74)(13,138,19,144)(14,137,20,143)(15,136,21,142)(16,135,22,141)(17,134,23,140)(18,133,24,139)(25,106,31,100)(26,105,32,99)(27,104,33,98)(28,103,34,97)(29,102,35,108)(30,101,36,107)(37,123,43,129)(38,122,44,128)(39,121,45,127)(40,132,46,126)(41,131,47,125)(42,130,48,124)(49,68,55,62)(50,67,56,61)(51,66,57,72)(52,65,58,71)(53,64,59,70)(54,63,60,69)(85,119,91,113)(86,118,92,112)(87,117,93,111)(88,116,94,110)(89,115,95,109)(90,114,96,120) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,10,7,4),(2,11,8,5),(3,12,9,6),(13,81,19,75),(14,82,20,76),(15,83,21,77),(16,84,22,78),(17,73,23,79),(18,74,24,80),(25,91,31,85),(26,92,32,86),(27,93,33,87),(28,94,34,88),(29,95,35,89),(30,96,36,90),(37,46,43,40),(38,47,44,41),(39,48,45,42),(49,122,55,128),(50,123,56,129),(51,124,57,130),(52,125,58,131),(53,126,59,132),(54,127,60,121),(61,64,67,70),(62,65,68,71),(63,66,69,72),(97,119,103,113),(98,120,104,114),(99,109,105,115),(100,110,106,116),(101,111,107,117),(102,112,108,118),(133,136,139,142),(134,137,140,143),(135,138,141,144)], [(1,137,7,143),(2,138,8,144),(3,139,9,133),(4,140,10,134),(5,141,11,135),(6,142,12,136),(13,78,19,84),(14,79,20,73),(15,80,21,74),(16,81,22,75),(17,82,23,76),(18,83,24,77),(25,28,31,34),(26,29,32,35),(27,30,33,36),(37,70,43,64),(38,71,44,65),(39,72,45,66),(40,61,46,67),(41,62,47,68),(42,63,48,69),(49,131,55,125),(50,132,56,126),(51,121,57,127),(52,122,58,128),(53,123,59,129),(54,124,60,130),(85,94,91,88),(86,95,92,89),(87,96,93,90),(97,100,103,106),(98,101,104,107),(99,102,105,108),(109,118,115,112),(110,119,116,113),(111,120,117,114)], [(1,86,131,5,90,123,9,94,127),(2,87,132,6,91,124,10,95,128),(3,88,121,7,92,125,11,96,129),(4,89,122,8,93,126,12,85,130),(13,62,105,17,66,97,21,70,101),(14,63,106,18,67,98,22,71,102),(15,64,107,19,68,99,23,72,103),(16,65,108,20,69,100,24,61,104),(25,54,143,29,58,135,33,50,139),(26,55,144,30,59,136,34,51,140),(27,56,133,31,60,137,35,52,141),(28,57,134,32,49,138,36,53,142),(37,120,75,41,112,79,45,116,83),(38,109,76,42,113,80,46,117,84),(39,110,77,43,114,81,47,118,73),(40,111,78,44,115,82,48,119,74)], [(1,73,7,79),(2,84,8,78),(3,83,9,77),(4,82,10,76),(5,81,11,75),(6,80,12,74),(13,138,19,144),(14,137,20,143),(15,136,21,142),(16,135,22,141),(17,134,23,140),(18,133,24,139),(25,106,31,100),(26,105,32,99),(27,104,33,98),(28,103,34,97),(29,102,35,108),(30,101,36,107),(37,123,43,129),(38,122,44,128),(39,121,45,127),(40,132,46,126),(41,131,47,125),(42,130,48,124),(49,68,55,62),(50,67,56,61),(51,66,57,72),(52,65,58,71),(53,64,59,70),(54,63,60,69),(85,119,91,113),(86,118,92,112),(87,117,93,111),(88,116,94,110),(89,115,95,109),(90,114,96,120)]])

Matrix representation of C12.3S4 in GL4(𝔽73) generated by

70000
07000
1471240
4943024
,
27000
274600
52501
6762720
,
271900
04600
1056046
1070460
,
195200
475200
48534343
3368766
,
2638710
426721
13392819
24136266
G:=sub<GL(4,GF(73))| [70,0,14,49,0,70,71,43,0,0,24,0,0,0,0,24],[27,27,52,67,0,46,5,62,0,0,0,72,0,0,1,0],[27,0,10,10,19,46,56,70,0,0,0,46,0,0,46,0],[19,47,48,33,52,52,53,68,0,0,43,7,0,0,43,66],[26,4,13,24,38,26,39,13,71,72,28,62,0,1,19,66] >;

C12.3S4 in GAP, Magma, Sage, TeX

C_{12}._3S_4
% in TeX

G:=Group("C12.3S4");
// GroupNames label

G:=SmallGroup(288,338);
// by ID

G=gap.SmallGroup(288,338);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,2,-2,1008,2045,1016,422,142,675,2524,1908,172,1517,1153,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^12=1,b^2=c^2=e^2=a^6,d^3=a^4,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a^-1,c*b*c^-1=a^6*b,d*b*d^-1=a^6*b*c,e*b*e^-1=b*c,d*c*d^-1=b,e*c*e^-1=a^6*c,e*d*e^-1=a^8*d^2>;
// generators/relations

Export

Character table of C12.3S4 in TeX

׿
×
𝔽