extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C18).1D4 = Dic18⋊C4 | φ: D4/C2 → C22 ⊆ Aut C2×C18 | 72 | 4 | (C2xC18).1D4 | 288,32 |
(C2×C18).2D4 = C23⋊2Dic9 | φ: D4/C2 → C22 ⊆ Aut C2×C18 | 72 | 4 | (C2xC18).2D4 | 288,41 |
(C2×C18).3D4 = Q8⋊3Dic9 | φ: D4/C2 → C22 ⊆ Aut C2×C18 | 72 | 4 | (C2xC18).3D4 | 288,44 |
(C2×C18).4D4 = C22.4D36 | φ: D4/C2 → C22 ⊆ Aut C2×C18 | 144 | | (C2xC18).4D4 | 288,96 |
(C2×C18).5D4 = C8⋊D18 | φ: D4/C2 → C22 ⊆ Aut C2×C18 | 72 | 4+ | (C2xC18).5D4 | 288,118 |
(C2×C18).6D4 = C8.D18 | φ: D4/C2 → C22 ⊆ Aut C2×C18 | 144 | 4- | (C2xC18).6D4 | 288,119 |
(C2×C18).7D4 = C23.23D18 | φ: D4/C2 → C22 ⊆ Aut C2×C18 | 144 | | (C2xC18).7D4 | 288,145 |
(C2×C18).8D4 = D4.D18 | φ: D4/C2 → C22 ⊆ Aut C2×C18 | 144 | 4- | (C2xC18).8D4 | 288,159 |
(C2×C18).9D4 = D4⋊D18 | φ: D4/C2 → C22 ⊆ Aut C2×C18 | 72 | 4+ | (C2xC18).9D4 | 288,160 |
(C2×C18).10D4 = D4.9D18 | φ: D4/C2 → C22 ⊆ Aut C2×C18 | 144 | 4 | (C2xC18).10D4 | 288,161 |
(C2×C18).11D4 = C9×C4○D8 | φ: D4/C4 → C2 ⊆ Aut C2×C18 | 144 | 2 | (C2xC18).11D4 | 288,185 |
(C2×C18).12D4 = C36.45D4 | φ: D4/C4 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).12D4 | 288,24 |
(C2×C18).13D4 = C8⋊Dic9 | φ: D4/C4 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).13D4 | 288,25 |
(C2×C18).14D4 = C72⋊1C4 | φ: D4/C4 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).14D4 | 288,26 |
(C2×C18).15D4 = C2.D72 | φ: D4/C4 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).15D4 | 288,28 |
(C2×C18).16D4 = C2×Dic36 | φ: D4/C4 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).16D4 | 288,109 |
(C2×C18).17D4 = C2×C72⋊C2 | φ: D4/C4 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).17D4 | 288,113 |
(C2×C18).18D4 = C2×D72 | φ: D4/C4 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).18D4 | 288,114 |
(C2×C18).19D4 = D72⋊7C2 | φ: D4/C4 → C2 ⊆ Aut C2×C18 | 144 | 2 | (C2xC18).19D4 | 288,115 |
(C2×C18).20D4 = C2×C4⋊Dic9 | φ: D4/C4 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).20D4 | 288,135 |
(C2×C18).21D4 = C2×D18⋊C4 | φ: D4/C4 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).21D4 | 288,137 |
(C2×C18).22D4 = C9×C23⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 72 | 4 | (C2xC18).22D4 | 288,49 |
(C2×C18).23D4 = C9×C4≀C2 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 72 | 2 | (C2xC18).23D4 | 288,54 |
(C2×C18).24D4 = C9×C22.D4 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).24D4 | 288,173 |
(C2×C18).25D4 = C9×C8⋊C22 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 72 | 4 | (C2xC18).25D4 | 288,186 |
(C2×C18).26D4 = C9×C8.C22 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 144 | 4 | (C2xC18).26D4 | 288,187 |
(C2×C18).27D4 = C42⋊4D9 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 72 | 2 | (C2xC18).27D4 | 288,12 |
(C2×C18).28D4 = C22.D36 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 72 | 4 | (C2xC18).28D4 | 288,13 |
(C2×C18).29D4 = C36.Q8 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).29D4 | 288,14 |
(C2×C18).30D4 = C4.Dic18 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).30D4 | 288,15 |
(C2×C18).31D4 = C18.Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).31D4 | 288,16 |
(C2×C18).32D4 = C18.D8 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).32D4 | 288,17 |
(C2×C18).33D4 = C18.C42 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).33D4 | 288,38 |
(C2×C18).34D4 = D4⋊Dic9 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).34D4 | 288,40 |
(C2×C18).35D4 = Q8⋊2Dic9 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).35D4 | 288,43 |
(C2×C18).36D4 = C2×Dic9⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).36D4 | 288,133 |
(C2×C18).37D4 = C23.28D18 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).37D4 | 288,139 |
(C2×C18).38D4 = C2×D4.D9 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).38D4 | 288,141 |
(C2×C18).39D4 = C2×D4⋊D9 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).39D4 | 288,142 |
(C2×C18).40D4 = D36⋊6C22 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 72 | 4 | (C2xC18).40D4 | 288,143 |
(C2×C18).41D4 = C2×C9⋊Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 288 | | (C2xC18).41D4 | 288,151 |
(C2×C18).42D4 = C2×Q8⋊2D9 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).42D4 | 288,152 |
(C2×C18).43D4 = C36.C23 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 144 | 4 | (C2xC18).43D4 | 288,153 |
(C2×C18).44D4 = C2×C18.D4 | φ: D4/C22 → C2 ⊆ Aut C2×C18 | 144 | | (C2xC18).44D4 | 288,162 |
(C2×C18).45D4 = C9×C2.C42 | central extension (φ=1) | 288 | | (C2xC18).45D4 | 288,45 |
(C2×C18).46D4 = C9×D4⋊C4 | central extension (φ=1) | 144 | | (C2xC18).46D4 | 288,52 |
(C2×C18).47D4 = C9×Q8⋊C4 | central extension (φ=1) | 288 | | (C2xC18).47D4 | 288,53 |
(C2×C18).48D4 = C9×C4.Q8 | central extension (φ=1) | 288 | | (C2xC18).48D4 | 288,56 |
(C2×C18).49D4 = C9×C2.D8 | central extension (φ=1) | 288 | | (C2xC18).49D4 | 288,57 |
(C2×C18).50D4 = C22⋊C4×C18 | central extension (φ=1) | 144 | | (C2xC18).50D4 | 288,165 |
(C2×C18).51D4 = C4⋊C4×C18 | central extension (φ=1) | 288 | | (C2xC18).51D4 | 288,166 |
(C2×C18).52D4 = D8×C18 | central extension (φ=1) | 144 | | (C2xC18).52D4 | 288,182 |
(C2×C18).53D4 = SD16×C18 | central extension (φ=1) | 144 | | (C2xC18).53D4 | 288,183 |
(C2×C18).54D4 = Q16×C18 | central extension (φ=1) | 288 | | (C2xC18).54D4 | 288,184 |