Copied to
clipboard

G = D4.D18order 288 = 25·32

3rd non-split extension by D4 of D18 acting via D18/C18=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.8D18, C36.50D4, Q8.13D18, C36.17C23, Dic18.11C22, D4.D96C2, C4○D4.4D9, C9⋊Q166C2, (C2×C18).8D4, C9⋊C8.4C22, (C3×D4).32D6, (C2×C12).68D6, (C2×C4).20D18, C18.59(C2×D4), C95(C8.C22), C4.Dic99C2, (C3×Q8).56D6, C4.24(C9⋊D4), C3.(Q8.14D6), (D4×C9).8C22, C4.17(C22×D9), (C2×Dic18)⋊11C2, (Q8×C9).8C22, (C2×C36).45C22, C12.56(C22×S3), C22.5(C9⋊D4), C12.112(C3⋊D4), (C9×C4○D4).3C2, C2.23(C2×C9⋊D4), (C3×C4○D4).11S3, (C2×C6).7(C3⋊D4), C6.107(C2×C3⋊D4), SmallGroup(288,159)

Series: Derived Chief Lower central Upper central

C1C36 — D4.D18
C1C3C9C18C36Dic18C2×Dic18 — D4.D18
C9C18C36 — D4.D18
C1C2C2×C4C4○D4

Generators and relations for D4.D18
 G = < a,b,c,d | a4=b2=c18=1, d2=a2, bab=dad-1=a-1, ac=ca, cbc-1=a2b, dbd-1=a-1b, dcd-1=c-1 >

Subgroups: 316 in 90 conjugacy classes, 38 normal (30 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C9, Dic3, C12, C12, C2×C6, C2×C6, M4(2), SD16, Q16, C2×Q8, C4○D4, C18, C18, C3⋊C8, Dic6, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C8.C22, Dic9, C36, C36, C2×C18, C2×C18, C4.Dic3, D4.S3, C3⋊Q16, C2×Dic6, C3×C4○D4, C9⋊C8, Dic18, Dic18, C2×Dic9, C2×C36, C2×C36, D4×C9, D4×C9, Q8×C9, Q8.14D6, C4.Dic9, D4.D9, C9⋊Q16, C2×Dic18, C9×C4○D4, D4.D18
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D9, C3⋊D4, C22×S3, C8.C22, D18, C2×C3⋊D4, C9⋊D4, C22×D9, Q8.14D6, C2×C9⋊D4, D4.D18

Smallest permutation representation of D4.D18
On 144 points
Generators in S144
(1 100 113 84)(2 101 114 85)(3 102 115 86)(4 103 116 87)(5 104 117 88)(6 105 118 89)(7 106 119 90)(8 107 120 73)(9 108 121 74)(10 91 122 75)(11 92 123 76)(12 93 124 77)(13 94 125 78)(14 95 126 79)(15 96 109 80)(16 97 110 81)(17 98 111 82)(18 99 112 83)(19 141 39 60)(20 142 40 61)(21 143 41 62)(22 144 42 63)(23 127 43 64)(24 128 44 65)(25 129 45 66)(26 130 46 67)(27 131 47 68)(28 132 48 69)(29 133 49 70)(30 134 50 71)(31 135 51 72)(32 136 52 55)(33 137 53 56)(34 138 54 57)(35 139 37 58)(36 140 38 59)
(1 84)(2 101)(3 86)(4 103)(5 88)(6 105)(7 90)(8 107)(9 74)(10 91)(11 76)(12 93)(13 78)(14 95)(15 80)(16 97)(17 82)(18 99)(19 39)(21 41)(23 43)(25 45)(27 47)(29 49)(31 51)(33 53)(35 37)(55 136)(57 138)(59 140)(61 142)(63 144)(65 128)(67 130)(69 132)(71 134)(73 120)(75 122)(77 124)(79 126)(81 110)(83 112)(85 114)(87 116)(89 118)(92 123)(94 125)(96 109)(98 111)(100 113)(102 115)(104 117)(106 119)(108 121)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 62 113 143)(2 61 114 142)(3 60 115 141)(4 59 116 140)(5 58 117 139)(6 57 118 138)(7 56 119 137)(8 55 120 136)(9 72 121 135)(10 71 122 134)(11 70 123 133)(12 69 124 132)(13 68 125 131)(14 67 126 130)(15 66 109 129)(16 65 110 128)(17 64 111 127)(18 63 112 144)(19 102 39 86)(20 101 40 85)(21 100 41 84)(22 99 42 83)(23 98 43 82)(24 97 44 81)(25 96 45 80)(26 95 46 79)(27 94 47 78)(28 93 48 77)(29 92 49 76)(30 91 50 75)(31 108 51 74)(32 107 52 73)(33 106 53 90)(34 105 54 89)(35 104 37 88)(36 103 38 87)

G:=sub<Sym(144)| (1,100,113,84)(2,101,114,85)(3,102,115,86)(4,103,116,87)(5,104,117,88)(6,105,118,89)(7,106,119,90)(8,107,120,73)(9,108,121,74)(10,91,122,75)(11,92,123,76)(12,93,124,77)(13,94,125,78)(14,95,126,79)(15,96,109,80)(16,97,110,81)(17,98,111,82)(18,99,112,83)(19,141,39,60)(20,142,40,61)(21,143,41,62)(22,144,42,63)(23,127,43,64)(24,128,44,65)(25,129,45,66)(26,130,46,67)(27,131,47,68)(28,132,48,69)(29,133,49,70)(30,134,50,71)(31,135,51,72)(32,136,52,55)(33,137,53,56)(34,138,54,57)(35,139,37,58)(36,140,38,59), (1,84)(2,101)(3,86)(4,103)(5,88)(6,105)(7,90)(8,107)(9,74)(10,91)(11,76)(12,93)(13,78)(14,95)(15,80)(16,97)(17,82)(18,99)(19,39)(21,41)(23,43)(25,45)(27,47)(29,49)(31,51)(33,53)(35,37)(55,136)(57,138)(59,140)(61,142)(63,144)(65,128)(67,130)(69,132)(71,134)(73,120)(75,122)(77,124)(79,126)(81,110)(83,112)(85,114)(87,116)(89,118)(92,123)(94,125)(96,109)(98,111)(100,113)(102,115)(104,117)(106,119)(108,121), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,62,113,143)(2,61,114,142)(3,60,115,141)(4,59,116,140)(5,58,117,139)(6,57,118,138)(7,56,119,137)(8,55,120,136)(9,72,121,135)(10,71,122,134)(11,70,123,133)(12,69,124,132)(13,68,125,131)(14,67,126,130)(15,66,109,129)(16,65,110,128)(17,64,111,127)(18,63,112,144)(19,102,39,86)(20,101,40,85)(21,100,41,84)(22,99,42,83)(23,98,43,82)(24,97,44,81)(25,96,45,80)(26,95,46,79)(27,94,47,78)(28,93,48,77)(29,92,49,76)(30,91,50,75)(31,108,51,74)(32,107,52,73)(33,106,53,90)(34,105,54,89)(35,104,37,88)(36,103,38,87)>;

G:=Group( (1,100,113,84)(2,101,114,85)(3,102,115,86)(4,103,116,87)(5,104,117,88)(6,105,118,89)(7,106,119,90)(8,107,120,73)(9,108,121,74)(10,91,122,75)(11,92,123,76)(12,93,124,77)(13,94,125,78)(14,95,126,79)(15,96,109,80)(16,97,110,81)(17,98,111,82)(18,99,112,83)(19,141,39,60)(20,142,40,61)(21,143,41,62)(22,144,42,63)(23,127,43,64)(24,128,44,65)(25,129,45,66)(26,130,46,67)(27,131,47,68)(28,132,48,69)(29,133,49,70)(30,134,50,71)(31,135,51,72)(32,136,52,55)(33,137,53,56)(34,138,54,57)(35,139,37,58)(36,140,38,59), (1,84)(2,101)(3,86)(4,103)(5,88)(6,105)(7,90)(8,107)(9,74)(10,91)(11,76)(12,93)(13,78)(14,95)(15,80)(16,97)(17,82)(18,99)(19,39)(21,41)(23,43)(25,45)(27,47)(29,49)(31,51)(33,53)(35,37)(55,136)(57,138)(59,140)(61,142)(63,144)(65,128)(67,130)(69,132)(71,134)(73,120)(75,122)(77,124)(79,126)(81,110)(83,112)(85,114)(87,116)(89,118)(92,123)(94,125)(96,109)(98,111)(100,113)(102,115)(104,117)(106,119)(108,121), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,62,113,143)(2,61,114,142)(3,60,115,141)(4,59,116,140)(5,58,117,139)(6,57,118,138)(7,56,119,137)(8,55,120,136)(9,72,121,135)(10,71,122,134)(11,70,123,133)(12,69,124,132)(13,68,125,131)(14,67,126,130)(15,66,109,129)(16,65,110,128)(17,64,111,127)(18,63,112,144)(19,102,39,86)(20,101,40,85)(21,100,41,84)(22,99,42,83)(23,98,43,82)(24,97,44,81)(25,96,45,80)(26,95,46,79)(27,94,47,78)(28,93,48,77)(29,92,49,76)(30,91,50,75)(31,108,51,74)(32,107,52,73)(33,106,53,90)(34,105,54,89)(35,104,37,88)(36,103,38,87) );

G=PermutationGroup([[(1,100,113,84),(2,101,114,85),(3,102,115,86),(4,103,116,87),(5,104,117,88),(6,105,118,89),(7,106,119,90),(8,107,120,73),(9,108,121,74),(10,91,122,75),(11,92,123,76),(12,93,124,77),(13,94,125,78),(14,95,126,79),(15,96,109,80),(16,97,110,81),(17,98,111,82),(18,99,112,83),(19,141,39,60),(20,142,40,61),(21,143,41,62),(22,144,42,63),(23,127,43,64),(24,128,44,65),(25,129,45,66),(26,130,46,67),(27,131,47,68),(28,132,48,69),(29,133,49,70),(30,134,50,71),(31,135,51,72),(32,136,52,55),(33,137,53,56),(34,138,54,57),(35,139,37,58),(36,140,38,59)], [(1,84),(2,101),(3,86),(4,103),(5,88),(6,105),(7,90),(8,107),(9,74),(10,91),(11,76),(12,93),(13,78),(14,95),(15,80),(16,97),(17,82),(18,99),(19,39),(21,41),(23,43),(25,45),(27,47),(29,49),(31,51),(33,53),(35,37),(55,136),(57,138),(59,140),(61,142),(63,144),(65,128),(67,130),(69,132),(71,134),(73,120),(75,122),(77,124),(79,126),(81,110),(83,112),(85,114),(87,116),(89,118),(92,123),(94,125),(96,109),(98,111),(100,113),(102,115),(104,117),(106,119),(108,121)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,62,113,143),(2,61,114,142),(3,60,115,141),(4,59,116,140),(5,58,117,139),(6,57,118,138),(7,56,119,137),(8,55,120,136),(9,72,121,135),(10,71,122,134),(11,70,123,133),(12,69,124,132),(13,68,125,131),(14,67,126,130),(15,66,109,129),(16,65,110,128),(17,64,111,127),(18,63,112,144),(19,102,39,86),(20,101,40,85),(21,100,41,84),(22,99,42,83),(23,98,43,82),(24,97,44,81),(25,96,45,80),(26,95,46,79),(27,94,47,78),(28,93,48,77),(29,92,49,76),(30,91,50,75),(31,108,51,74),(32,107,52,73),(33,106,53,90),(34,105,54,89),(35,104,37,88),(36,103,38,87)]])

51 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E6A6B6C6D8A8B9A9B9C12A12B12C12D12E18A18B18C18D···18L36A···36F36G···36O
order1222344444666688999121212121218181818···1836···3636···36
size11242224363624443636222224442224···42···24···4

51 irreducible representations

dim11111122222222222222444
type++++++++++++++++---
imageC1C2C2C2C2C2S3D4D4D6D6D6D9C3⋊D4C3⋊D4D18D18D18C9⋊D4C9⋊D4C8.C22Q8.14D6D4.D18
kernelD4.D18C4.Dic9D4.D9C9⋊Q16C2×Dic18C9×C4○D4C3×C4○D4C36C2×C18C2×C12C3×D4C3×Q8C4○D4C12C2×C6C2×C4D4Q8C4C22C9C3C1
# reps11221111111132233366126

Matrix representation of D4.D18 in GL6(𝔽73)

100000
010000
000010
003214166
0072000
003042072
,
7200000
0720000
0000720
004172327
0072000
000001
,
31280000
4530000
0068667149
0063591725
007700
004953519
,
54250000
44190000
002965
0063652728
00606768
003940012

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,32,72,30,0,0,0,1,0,42,0,0,1,41,0,0,0,0,0,66,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,41,72,0,0,0,0,72,0,0,0,0,72,32,0,0,0,0,0,7,0,1],[31,45,0,0,0,0,28,3,0,0,0,0,0,0,68,63,7,49,0,0,66,59,7,5,0,0,71,17,0,35,0,0,49,25,0,19],[54,44,0,0,0,0,25,19,0,0,0,0,0,0,2,63,6,39,0,0,9,65,0,40,0,0,6,27,67,0,0,0,5,28,68,12] >;

D4.D18 in GAP, Magma, Sage, TeX

D_4.D_{18}
% in TeX

G:=Group("D4.D18");
// GroupNames label

G:=SmallGroup(288,159);
// by ID

G=gap.SmallGroup(288,159);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,254,219,675,185,80,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^18=1,d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽