direct product, p-group, metabelian, nilpotent (class 4), monomial
Aliases: C2×D16, C8.9D4, C4.6D8, C16⋊2C22, D8⋊1C22, C8.6C23, C22.14D8, (C2×C16)⋊5C2, (C2×D8)⋊6C2, C4.7(C2×D4), (C2×C4).81D4, C2.12(C2×D8), (C2×C8).82C22, 2-Sylow(SO-(4,17)), SmallGroup(64,186)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×D16
G = < a,b,c | a2=b16=c2=1, ab=ba, ac=ca, cbc=b-1 >
Character table of C2×D16
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 8A | 8B | 8C | 8D | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | -ζ165+ζ163 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | ζ167-ζ16 | orthogonal lifted from D16 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | ζ167-ζ16 | orthogonal lifted from D16 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | orthogonal lifted from D16 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ167-ζ16 | -ζ167+ζ16 | orthogonal lifted from D16 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ165-ζ163 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | orthogonal lifted from D16 |
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 17)(16 18)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(17 21)(18 20)(22 32)(23 31)(24 30)(25 29)(26 28)
G:=sub<Sym(32)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,17)(16,18), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,21)(18,20)(22,32)(23,31)(24,30)(25,29)(26,28)>;
G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,17)(16,18), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,21)(18,20)(22,32)(23,31)(24,30)(25,29)(26,28) );
G=PermutationGroup([[(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,17),(16,18)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(17,21),(18,20),(22,32),(23,31),(24,30),(25,29),(26,28)]])
C2×D16 is a maximal subgroup of
D16⋊2C4 M6(2)⋊C2 D16⋊4C4 D8⋊7D4 D8⋊8D4 Q16.10D4 D8⋊2D4 D8.5D4 C16⋊7D4 C16⋊D4 D4.3D8 C4⋊D16 C8.21D8 C16⋊3D4 C32⋊C22 D4○D16
C2×D16 is a maximal quotient of
D8⋊7D4 D8⋊2D4 C16⋊7D4 D8⋊1Q8 C22.D16 C4.4D16 C4⋊D16 C16⋊2Q8 C4○D32 C32⋊C22 Q64⋊C2
Matrix representation of C2×D16 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
14 | 3 | 0 | 0 |
14 | 14 | 0 | 0 |
0 | 0 | 13 | 11 |
0 | 0 | 6 | 13 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[14,14,0,0,3,14,0,0,0,0,13,6,0,0,11,13],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;
C2×D16 in GAP, Magma, Sage, TeX
C_2\times D_{16}
% in TeX
G:=Group("C2xD16");
// GroupNames label
G:=SmallGroup(64,186);
// by ID
G=gap.SmallGroup(64,186);
# by ID
G:=PCGroup([6,-2,2,2,-2,-2,-2,121,579,297,165,1444,730,88]);
// Polycyclic
G:=Group<a,b,c|a^2=b^16=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C2×D16 in TeX
Character table of C2×D16 in TeX