Copied to
clipboard

G = C23.45D20order 320 = 26·5

16th non-split extension by C23 of D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.45D20, C24.49D10, C10.74(C4×D4), (C2×Dic5)⋊17D4, C23.26(C4×D5), C10.32C22≀C2, (C23×Dic5)⋊1C2, (C22×C4).33D10, C22.103(D4×D5), (C22×C10).68D4, C22.44(C2×D20), C2.5(C22⋊D20), C10.86(C4⋊D4), C23.36(C5⋊D4), C54(C23.23D4), C221(D10⋊C4), C2.4(Dic5⋊D4), (C22×C20).26C22, (C23×C10).41C22, (C23×D5).14C22, C23.285(C22×D5), C10.10C4216C2, C2.29(Dic54D4), C22.50(D42D5), (C22×C10).332C23, C2.5(C22.D20), C10.33(C22.D4), (C22×Dic5).209C22, (C2×C5⋊D4)⋊11C4, (C2×C22⋊C4)⋊5D5, (C10×C22⋊C4)⋊3C2, (C2×Dic5)⋊8(C2×C4), (C22×D5)⋊6(C2×C4), (C2×D10⋊C4)⋊6C2, C22.129(C2×C4×D5), (C2×C10)⋊5(C22⋊C4), (C2×C10).324(C2×D4), C10.78(C2×C22⋊C4), (C22×C5⋊D4).4C2, C22.53(C2×C5⋊D4), C2.10(C2×D10⋊C4), (C2×C10).147(C4○D4), (C2×C10).212(C22×C4), (C22×C10).123(C2×C4), SmallGroup(320,585)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C23.45D20
C1C5C10C2×C10C22×C10C23×D5C22×C5⋊D4 — C23.45D20
C5C2×C10 — C23.45D20
C1C23C2×C22⋊C4

Generators and relations for C23.45D20
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=b, f2=cb=bc, ab=ba, ac=ca, eae-1=ad=da, af=fa, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce9 >

Subgroups: 1118 in 286 conjugacy classes, 83 normal (25 characteristic)
C1, C2 [×3], C2 [×4], C2 [×6], C4 [×8], C22 [×3], C22 [×8], C22 [×22], C5, C2×C4 [×26], D4 [×8], C23, C23 [×6], C23 [×12], D5 [×2], C10 [×3], C10 [×4], C10 [×4], C22⋊C4 [×6], C22×C4 [×2], C22×C4 [×9], C2×D4 [×8], C24, C24, Dic5 [×6], C20 [×2], D10 [×10], C2×C10 [×3], C2×C10 [×8], C2×C10 [×12], C2.C42 [×2], C2×C22⋊C4, C2×C22⋊C4 [×2], C23×C4, C22×D4, C2×Dic5 [×6], C2×Dic5 [×14], C5⋊D4 [×8], C2×C20 [×6], C22×D5 [×2], C22×D5 [×6], C22×C10, C22×C10 [×6], C22×C10 [×4], C23.23D4, D10⋊C4 [×4], C5×C22⋊C4 [×2], C22×Dic5, C22×Dic5 [×2], C22×Dic5 [×6], C2×C5⋊D4 [×4], C2×C5⋊D4 [×4], C22×C20 [×2], C23×D5, C23×C10, C10.10C42 [×2], C2×D10⋊C4 [×2], C10×C22⋊C4, C23×Dic5, C22×C5⋊D4, C23.45D20
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×8], C23, D5, C22⋊C4 [×4], C22×C4, C2×D4 [×4], C4○D4 [×2], D10 [×3], C2×C22⋊C4, C4×D4 [×2], C22≀C2, C4⋊D4 [×2], C22.D4, C4×D5 [×2], D20 [×2], C5⋊D4 [×2], C22×D5, C23.23D4, D10⋊C4 [×4], C2×C4×D5, C2×D20, D4×D5 [×2], D42D5 [×2], C2×C5⋊D4, Dic54D4 [×2], C22⋊D20, C22.D20, C2×D10⋊C4, Dic5⋊D4 [×2], C23.45D20

Smallest permutation representation of C23.45D20
On 160 points
Generators in S160
(1 25)(2 76)(3 27)(4 78)(5 29)(6 80)(7 31)(8 62)(9 33)(10 64)(11 35)(12 66)(13 37)(14 68)(15 39)(16 70)(17 21)(18 72)(19 23)(20 74)(22 58)(24 60)(26 42)(28 44)(30 46)(32 48)(34 50)(36 52)(38 54)(40 56)(41 75)(43 77)(45 79)(47 61)(49 63)(51 65)(53 67)(55 69)(57 71)(59 73)(81 133)(82 109)(83 135)(84 111)(85 137)(86 113)(87 139)(88 115)(89 121)(90 117)(91 123)(92 119)(93 125)(94 101)(95 127)(96 103)(97 129)(98 105)(99 131)(100 107)(102 146)(104 148)(106 150)(108 152)(110 154)(112 156)(114 158)(116 160)(118 142)(120 144)(122 141)(124 143)(126 145)(128 147)(130 149)(132 151)(134 153)(136 155)(138 157)(140 159)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 151)(2 152)(3 153)(4 154)(5 155)(6 156)(7 157)(8 158)(9 159)(10 160)(11 141)(12 142)(13 143)(14 144)(15 145)(16 146)(17 147)(18 148)(19 149)(20 150)(21 128)(22 129)(23 130)(24 131)(25 132)(26 133)(27 134)(28 135)(29 136)(30 137)(31 138)(32 139)(33 140)(34 121)(35 122)(36 123)(37 124)(38 125)(39 126)(40 127)(41 100)(42 81)(43 82)(44 83)(45 84)(46 85)(47 86)(48 87)(49 88)(50 89)(51 90)(52 91)(53 92)(54 93)(55 94)(56 95)(57 96)(58 97)(59 98)(60 99)(61 113)(62 114)(63 115)(64 116)(65 117)(66 118)(67 119)(68 120)(69 101)(70 102)(71 103)(72 104)(73 105)(74 106)(75 107)(76 108)(77 109)(78 110)(79 111)(80 112)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(17 57)(18 58)(19 59)(20 60)(21 71)(22 72)(23 73)(24 74)(25 75)(26 76)(27 77)(28 78)(29 79)(30 80)(31 61)(32 62)(33 63)(34 64)(35 65)(36 66)(37 67)(38 68)(39 69)(40 70)(81 152)(82 153)(83 154)(84 155)(85 156)(86 157)(87 158)(88 159)(89 160)(90 141)(91 142)(92 143)(93 144)(94 145)(95 146)(96 147)(97 148)(98 149)(99 150)(100 151)(101 126)(102 127)(103 128)(104 129)(105 130)(106 131)(107 132)(108 133)(109 134)(110 135)(111 136)(112 137)(113 138)(114 139)(115 140)(116 121)(117 122)(118 123)(119 124)(120 125)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 141 150)(2 149 142 9)(3 8 143 148)(4 147 144 7)(5 6 145 146)(11 20 151 160)(12 159 152 19)(13 18 153 158)(14 157 154 17)(15 16 155 156)(21 68 138 110)(22 109 139 67)(23 66 140 108)(24 107 121 65)(25 64 122 106)(26 105 123 63)(27 62 124 104)(28 103 125 61)(29 80 126 102)(30 101 127 79)(31 78 128 120)(32 119 129 77)(33 76 130 118)(34 117 131 75)(35 74 132 116)(36 115 133 73)(37 72 134 114)(38 113 135 71)(39 70 136 112)(40 111 137 69)(41 50 90 99)(42 98 91 49)(43 48 92 97)(44 96 93 47)(45 46 94 95)(51 60 100 89)(52 88 81 59)(53 58 82 87)(54 86 83 57)(55 56 84 85)

G:=sub<Sym(160)| (1,25)(2,76)(3,27)(4,78)(5,29)(6,80)(7,31)(8,62)(9,33)(10,64)(11,35)(12,66)(13,37)(14,68)(15,39)(16,70)(17,21)(18,72)(19,23)(20,74)(22,58)(24,60)(26,42)(28,44)(30,46)(32,48)(34,50)(36,52)(38,54)(40,56)(41,75)(43,77)(45,79)(47,61)(49,63)(51,65)(53,67)(55,69)(57,71)(59,73)(81,133)(82,109)(83,135)(84,111)(85,137)(86,113)(87,139)(88,115)(89,121)(90,117)(91,123)(92,119)(93,125)(94,101)(95,127)(96,103)(97,129)(98,105)(99,131)(100,107)(102,146)(104,148)(106,150)(108,152)(110,154)(112,156)(114,158)(116,160)(118,142)(120,144)(122,141)(124,143)(126,145)(128,147)(130,149)(132,151)(134,153)(136,155)(138,157)(140,159), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,151)(2,152)(3,153)(4,154)(5,155)(6,156)(7,157)(8,158)(9,159)(10,160)(11,141)(12,142)(13,143)(14,144)(15,145)(16,146)(17,147)(18,148)(19,149)(20,150)(21,128)(22,129)(23,130)(24,131)(25,132)(26,133)(27,134)(28,135)(29,136)(30,137)(31,138)(32,139)(33,140)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,100)(42,81)(43,82)(44,83)(45,84)(46,85)(47,86)(48,87)(49,88)(50,89)(51,90)(52,91)(53,92)(54,93)(55,94)(56,95)(57,96)(58,97)(59,98)(60,99)(61,113)(62,114)(63,115)(64,116)(65,117)(66,118)(67,119)(68,120)(69,101)(70,102)(71,103)(72,104)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(81,152)(82,153)(83,154)(84,155)(85,156)(86,157)(87,158)(88,159)(89,160)(90,141)(91,142)(92,143)(93,144)(94,145)(95,146)(96,147)(97,148)(98,149)(99,150)(100,151)(101,126)(102,127)(103,128)(104,129)(105,130)(106,131)(107,132)(108,133)(109,134)(110,135)(111,136)(112,137)(113,138)(114,139)(115,140)(116,121)(117,122)(118,123)(119,124)(120,125), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,141,150)(2,149,142,9)(3,8,143,148)(4,147,144,7)(5,6,145,146)(11,20,151,160)(12,159,152,19)(13,18,153,158)(14,157,154,17)(15,16,155,156)(21,68,138,110)(22,109,139,67)(23,66,140,108)(24,107,121,65)(25,64,122,106)(26,105,123,63)(27,62,124,104)(28,103,125,61)(29,80,126,102)(30,101,127,79)(31,78,128,120)(32,119,129,77)(33,76,130,118)(34,117,131,75)(35,74,132,116)(36,115,133,73)(37,72,134,114)(38,113,135,71)(39,70,136,112)(40,111,137,69)(41,50,90,99)(42,98,91,49)(43,48,92,97)(44,96,93,47)(45,46,94,95)(51,60,100,89)(52,88,81,59)(53,58,82,87)(54,86,83,57)(55,56,84,85)>;

G:=Group( (1,25)(2,76)(3,27)(4,78)(5,29)(6,80)(7,31)(8,62)(9,33)(10,64)(11,35)(12,66)(13,37)(14,68)(15,39)(16,70)(17,21)(18,72)(19,23)(20,74)(22,58)(24,60)(26,42)(28,44)(30,46)(32,48)(34,50)(36,52)(38,54)(40,56)(41,75)(43,77)(45,79)(47,61)(49,63)(51,65)(53,67)(55,69)(57,71)(59,73)(81,133)(82,109)(83,135)(84,111)(85,137)(86,113)(87,139)(88,115)(89,121)(90,117)(91,123)(92,119)(93,125)(94,101)(95,127)(96,103)(97,129)(98,105)(99,131)(100,107)(102,146)(104,148)(106,150)(108,152)(110,154)(112,156)(114,158)(116,160)(118,142)(120,144)(122,141)(124,143)(126,145)(128,147)(130,149)(132,151)(134,153)(136,155)(138,157)(140,159), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,151)(2,152)(3,153)(4,154)(5,155)(6,156)(7,157)(8,158)(9,159)(10,160)(11,141)(12,142)(13,143)(14,144)(15,145)(16,146)(17,147)(18,148)(19,149)(20,150)(21,128)(22,129)(23,130)(24,131)(25,132)(26,133)(27,134)(28,135)(29,136)(30,137)(31,138)(32,139)(33,140)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,100)(42,81)(43,82)(44,83)(45,84)(46,85)(47,86)(48,87)(49,88)(50,89)(51,90)(52,91)(53,92)(54,93)(55,94)(56,95)(57,96)(58,97)(59,98)(60,99)(61,113)(62,114)(63,115)(64,116)(65,117)(66,118)(67,119)(68,120)(69,101)(70,102)(71,103)(72,104)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(81,152)(82,153)(83,154)(84,155)(85,156)(86,157)(87,158)(88,159)(89,160)(90,141)(91,142)(92,143)(93,144)(94,145)(95,146)(96,147)(97,148)(98,149)(99,150)(100,151)(101,126)(102,127)(103,128)(104,129)(105,130)(106,131)(107,132)(108,133)(109,134)(110,135)(111,136)(112,137)(113,138)(114,139)(115,140)(116,121)(117,122)(118,123)(119,124)(120,125), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,141,150)(2,149,142,9)(3,8,143,148)(4,147,144,7)(5,6,145,146)(11,20,151,160)(12,159,152,19)(13,18,153,158)(14,157,154,17)(15,16,155,156)(21,68,138,110)(22,109,139,67)(23,66,140,108)(24,107,121,65)(25,64,122,106)(26,105,123,63)(27,62,124,104)(28,103,125,61)(29,80,126,102)(30,101,127,79)(31,78,128,120)(32,119,129,77)(33,76,130,118)(34,117,131,75)(35,74,132,116)(36,115,133,73)(37,72,134,114)(38,113,135,71)(39,70,136,112)(40,111,137,69)(41,50,90,99)(42,98,91,49)(43,48,92,97)(44,96,93,47)(45,46,94,95)(51,60,100,89)(52,88,81,59)(53,58,82,87)(54,86,83,57)(55,56,84,85) );

G=PermutationGroup([(1,25),(2,76),(3,27),(4,78),(5,29),(6,80),(7,31),(8,62),(9,33),(10,64),(11,35),(12,66),(13,37),(14,68),(15,39),(16,70),(17,21),(18,72),(19,23),(20,74),(22,58),(24,60),(26,42),(28,44),(30,46),(32,48),(34,50),(36,52),(38,54),(40,56),(41,75),(43,77),(45,79),(47,61),(49,63),(51,65),(53,67),(55,69),(57,71),(59,73),(81,133),(82,109),(83,135),(84,111),(85,137),(86,113),(87,139),(88,115),(89,121),(90,117),(91,123),(92,119),(93,125),(94,101),(95,127),(96,103),(97,129),(98,105),(99,131),(100,107),(102,146),(104,148),(106,150),(108,152),(110,154),(112,156),(114,158),(116,160),(118,142),(120,144),(122,141),(124,143),(126,145),(128,147),(130,149),(132,151),(134,153),(136,155),(138,157),(140,159)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,151),(2,152),(3,153),(4,154),(5,155),(6,156),(7,157),(8,158),(9,159),(10,160),(11,141),(12,142),(13,143),(14,144),(15,145),(16,146),(17,147),(18,148),(19,149),(20,150),(21,128),(22,129),(23,130),(24,131),(25,132),(26,133),(27,134),(28,135),(29,136),(30,137),(31,138),(32,139),(33,140),(34,121),(35,122),(36,123),(37,124),(38,125),(39,126),(40,127),(41,100),(42,81),(43,82),(44,83),(45,84),(46,85),(47,86),(48,87),(49,88),(50,89),(51,90),(52,91),(53,92),(54,93),(55,94),(56,95),(57,96),(58,97),(59,98),(60,99),(61,113),(62,114),(63,115),(64,116),(65,117),(66,118),(67,119),(68,120),(69,101),(70,102),(71,103),(72,104),(73,105),(74,106),(75,107),(76,108),(77,109),(78,110),(79,111),(80,112)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(17,57),(18,58),(19,59),(20,60),(21,71),(22,72),(23,73),(24,74),(25,75),(26,76),(27,77),(28,78),(29,79),(30,80),(31,61),(32,62),(33,63),(34,64),(35,65),(36,66),(37,67),(38,68),(39,69),(40,70),(81,152),(82,153),(83,154),(84,155),(85,156),(86,157),(87,158),(88,159),(89,160),(90,141),(91,142),(92,143),(93,144),(94,145),(95,146),(96,147),(97,148),(98,149),(99,150),(100,151),(101,126),(102,127),(103,128),(104,129),(105,130),(106,131),(107,132),(108,133),(109,134),(110,135),(111,136),(112,137),(113,138),(114,139),(115,140),(116,121),(117,122),(118,123),(119,124),(120,125)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,141,150),(2,149,142,9),(3,8,143,148),(4,147,144,7),(5,6,145,146),(11,20,151,160),(12,159,152,19),(13,18,153,158),(14,157,154,17),(15,16,155,156),(21,68,138,110),(22,109,139,67),(23,66,140,108),(24,107,121,65),(25,64,122,106),(26,105,123,63),(27,62,124,104),(28,103,125,61),(29,80,126,102),(30,101,127,79),(31,78,128,120),(32,119,129,77),(33,76,130,118),(34,117,131,75),(35,74,132,116),(36,115,133,73),(37,72,134,114),(38,113,135,71),(39,70,136,112),(40,111,137,69),(41,50,90,99),(42,98,91,49),(43,48,92,97),(44,96,93,47),(45,46,94,95),(51,60,100,89),(52,88,81,59),(53,58,82,87),(54,86,83,57),(55,56,84,85)])

68 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C4D4E···4L4M4N5A5B10A···10N10O···10V20A···20P
order12···222222244444···4445510···1010···1020···20
size11···122222020444410···102020222···24···44···4

68 irreducible representations

dim111111122222222244
type+++++++++++++-
imageC1C2C2C2C2C2C4D4D4D5C4○D4D10D10C4×D5D20C5⋊D4D4×D5D42D5
kernelC23.45D20C10.10C42C2×D10⋊C4C10×C22⋊C4C23×Dic5C22×C5⋊D4C2×C5⋊D4C2×Dic5C22×C10C2×C22⋊C4C2×C10C22×C4C24C23C23C23C22C22
# reps122111844244288844

Matrix representation of C23.45D20 in GL5(𝔽41)

10000
040000
004000
00019
000040
,
400000
040000
004000
000400
000040
,
10000
040000
004000
00010
00001
,
10000
01000
00100
000400
000040
,
320000
0142700
0143000
000320
00029
,
90000
0271400
0301400
000320
000032

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,9,40],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[32,0,0,0,0,0,14,14,0,0,0,27,30,0,0,0,0,0,32,2,0,0,0,0,9],[9,0,0,0,0,0,27,30,0,0,0,14,14,0,0,0,0,0,32,0,0,0,0,0,32] >;

C23.45D20 in GAP, Magma, Sage, TeX

C_2^3._{45}D_{20}
% in TeX

G:=Group("C2^3.45D20");
// GroupNames label

G:=SmallGroup(320,585);
// by ID

G=gap.SmallGroup(320,585);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,422,387,58,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=b,f^2=c*b=b*c,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,a*f=f*a,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^9>;
// generators/relations

׿
×
𝔽