extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D10⋊C4)⋊1C2 = (C2×Dic5)⋊3D4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):1C2 | 320,299 |
(C2×D10⋊C4)⋊2C2 = (C2×C4)⋊6D20 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):2C2 | 320,566 |
(C2×D10⋊C4)⋊3C2 = C24.48D10 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):3C2 | 320,582 |
(C2×D10⋊C4)⋊4C2 = C24.12D10 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):4C2 | 320,583 |
(C2×D10⋊C4)⋊5C2 = C24.13D10 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):5C2 | 320,584 |
(C2×D10⋊C4)⋊6C2 = C23.45D20 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):6C2 | 320,585 |
(C2×D10⋊C4)⋊7C2 = C24.14D10 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):7C2 | 320,586 |
(C2×D10⋊C4)⋊8C2 = C23⋊2D20 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):8C2 | 320,587 |
(C2×D10⋊C4)⋊9C2 = C24.16D10 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):9C2 | 320,588 |
(C2×D10⋊C4)⋊10C2 = (C2×D20)⋊22C4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):10C2 | 320,615 |
(C2×D10⋊C4)⋊11C2 = C24.65D10 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):11C2 | 320,840 |
(C2×D10⋊C4)⋊12C2 = C2×C4.D20 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):12C2 | 320,1148 |
(C2×D10⋊C4)⋊13C2 = C2×C23.23D10 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):13C2 | 320,1461 |
(C2×D10⋊C4)⋊14C2 = C2×C20⋊7D4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):14C2 | 320,1462 |
(C2×D10⋊C4)⋊15C2 = (C2×C20)⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):15C2 | 320,298 |
(C2×D10⋊C4)⋊16C2 = C2×C22⋊D20 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):16C2 | 320,1159 |
(C2×D10⋊C4)⋊17C2 = C2×D10.12D4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):17C2 | 320,1160 |
(C2×D10⋊C4)⋊18C2 = C2×Dic5.5D4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):18C2 | 320,1163 |
(C2×D10⋊C4)⋊19C2 = C2×C22.D20 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):19C2 | 320,1164 |
(C2×D10⋊C4)⋊20C2 = C2×C4⋊D20 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):20C2 | 320,1178 |
(C2×D10⋊C4)⋊21C2 = D4⋊5D20 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):21C2 | 320,1226 |
(C2×D10⋊C4)⋊22C2 = C42⋊16D10 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):22C2 | 320,1228 |
(C2×D10⋊C4)⋊23C2 = C10.1212+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):23C2 | 320,1326 |
(C2×D10⋊C4)⋊24C2 = C10.1222+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):24C2 | 320,1330 |
(C2×D10⋊C4)⋊25C2 = C10.372+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):25C2 | 320,1277 |
(C2×D10⋊C4)⋊26C2 = C10.462+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):26C2 | 320,1289 |
(C2×D10⋊C4)⋊27C2 = C10.562+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):27C2 | 320,1316 |
(C2×D10⋊C4)⋊28C2 = (C2×C4)⋊9D20 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):28C2 | 320,292 |
(C2×D10⋊C4)⋊29C2 = C2×D5×C22⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):29C2 | 320,1156 |
(C2×D10⋊C4)⋊30C2 = C2×Dic5⋊4D4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):30C2 | 320,1157 |
(C2×D10⋊C4)⋊31C2 = C2×D10⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):31C2 | 320,1161 |
(C2×D10⋊C4)⋊32C2 = C2×D20⋊8C4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):32C2 | 320,1175 |
(C2×D10⋊C4)⋊33C2 = C2×D10.13D4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):33C2 | 320,1177 |
(C2×D10⋊C4)⋊34C2 = C42⋊11D10 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):34C2 | 320,1217 |
(C2×D10⋊C4)⋊35C2 = C42⋊17D10 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):35C2 | 320,1232 |
(C2×D10⋊C4)⋊36C2 = C10.402+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):36C2 | 320,1282 |
(C2×D10⋊C4)⋊37C2 = C10.532+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):37C2 | 320,1309 |
(C2×D10⋊C4)⋊38C2 = (C2×C4)⋊3D20 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):38C2 | 320,618 |
(C2×D10⋊C4)⋊39C2 = C24.21D10 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):39C2 | 320,850 |
(C2×D10⋊C4)⋊40C2 = C42⋊10D10 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):40C2 | 320,1199 |
(C2×D10⋊C4)⋊41C2 = C2×C23⋊D10 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):41C2 | 320,1471 |
(C2×D10⋊C4)⋊42C2 = C2×Dic5⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):42C2 | 320,1474 |
(C2×D10⋊C4)⋊43C2 = C2×C20.23D4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4):43C2 | 320,1486 |
(C2×D10⋊C4)⋊44C2 = C10.1452+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4):44C2 | 320,1501 |
(C2×D10⋊C4)⋊45C2 = C2×C4×D20 | φ: trivial image | 160 | | (C2xD10:C4):45C2 | 320,1145 |
(C2×D10⋊C4)⋊46C2 = C2×C4×C5⋊D4 | φ: trivial image | 160 | | (C2xD10:C4):46C2 | 320,1460 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D10⋊C4).1C2 = C5⋊(C23⋊C8) | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4).1C2 | 320,253 |
(C2×D10⋊C4).2C2 = C22⋊F5⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4).2C2 | 320,255 |
(C2×D10⋊C4).3C2 = C22.58(D4×D5) | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).3C2 | 320,291 |
(C2×D10⋊C4).4C2 = D10⋊2(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).4C2 | 320,294 |
(C2×D10⋊C4).5C2 = D10⋊3(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).5C2 | 320,295 |
(C2×D10⋊C4).6C2 = C10.54(C4×D4) | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).6C2 | 320,296 |
(C2×D10⋊C4).7C2 = C10.55(C4×D4) | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).7C2 | 320,297 |
(C2×D10⋊C4).8C2 = (C2×C4).20D20 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).8C2 | 320,300 |
(C2×D10⋊C4).9C2 = (C2×C4).21D20 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).9C2 | 320,301 |
(C2×D10⋊C4).10C2 = C10.(C4⋊D4) | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).10C2 | 320,302 |
(C2×D10⋊C4).11C2 = (C22×D5).Q8 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).11C2 | 320,303 |
(C2×D10⋊C4).12C2 = (C2×C42)⋊D5 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).12C2 | 320,567 |
(C2×D10⋊C4).13C2 = D10⋊4(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).13C2 | 320,614 |
(C2×D10⋊C4).14C2 = D10⋊5(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).14C2 | 320,616 |
(C2×D10⋊C4).15C2 = C10.90(C4×D4) | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).15C2 | 320,617 |
(C2×D10⋊C4).16C2 = (C2×C20).289D4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).16C2 | 320,619 |
(C2×D10⋊C4).17C2 = (C2×C20).290D4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).17C2 | 320,620 |
(C2×D10⋊C4).18C2 = C2×C42⋊2D5 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).18C2 | 320,1150 |
(C2×D10⋊C4).19C2 = (C2×C20).33D4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).19C2 | 320,304 |
(C2×D10⋊C4).20C2 = C2×D10⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).20C2 | 320,1180 |
(C2×D10⋊C4).21C2 = C2×D10⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).21C2 | 320,1181 |
(C2×D10⋊C4).22C2 = C10.512+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4).22C2 | 320,1306 |
(C2×D10⋊C4).23C2 = C5⋊3(C23⋊C8) | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 80 | | (C2xD10:C4).23C2 | 320,26 |
(C2×D10⋊C4).24C2 = D10⋊2C42 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).24C2 | 320,293 |
(C2×D10⋊C4).25C2 = C2×C4⋊C4⋊7D5 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).25C2 | 320,1174 |
(C2×D10⋊C4).26C2 = (C2×C20).56D4 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).26C2 | 320,621 |
(C2×D10⋊C4).27C2 = (C22×D5)⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).27C2 | 320,858 |
(C2×D10⋊C4).28C2 = C2×C4⋊C4⋊D5 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).28C2 | 320,1184 |
(C2×D10⋊C4).29C2 = C2×D10⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C2×D10⋊C4 | 160 | | (C2xD10:C4).29C2 | 320,1485 |
(C2×D10⋊C4).30C2 = C4×D10⋊C4 | φ: trivial image | 160 | | (C2xD10:C4).30C2 | 320,565 |
(C2×D10⋊C4).31C2 = C2×C42⋊D5 | φ: trivial image | 160 | | (C2xD10:C4).31C2 | 320,1144 |