extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic5).1D4 = C23.5D20 | φ: D4/C1 → D4 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).1D4 | 320,369 |
(C2×Dic5).2D4 = D4.9D20 | φ: D4/C1 → D4 ⊆ Out C2×Dic5 | 80 | 4- | (C2xDic5).2D4 | 320,453 |
(C2×Dic5).3D4 = D4.10D20 | φ: D4/C1 → D4 ⊆ Out C2×Dic5 | 80 | 4 | (C2xDic5).3D4 | 320,454 |
(C2×Dic5).4D4 = C22⋊C4⋊D10 | φ: D4/C1 → D4 ⊆ Out C2×Dic5 | 80 | 4 | (C2xDic5).4D4 | 320,680 |
(C2×Dic5).5D4 = D20.38D4 | φ: D4/C1 → D4 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).5D4 | 320,828 |
(C2×Dic5).6D4 = D20.40D4 | φ: D4/C1 → D4 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).6D4 | 320,832 |
(C2×Dic5).7D4 = C42.F5 | φ: D4/C1 → D4 ⊆ Out C2×Dic5 | 80 | 4- | (C2xDic5).7D4 | 320,193 |
(C2×Dic5).8D4 = C42.2F5 | φ: D4/C1 → D4 ⊆ Out C2×Dic5 | 80 | 4 | (C2xDic5).8D4 | 320,194 |
(C2×Dic5).9D4 = C5⋊C2≀C4 | φ: D4/C1 → D4 ⊆ Out C2×Dic5 | 40 | 8+ | (C2xDic5).9D4 | 320,202 |
(C2×Dic5).10D4 = C22⋊C4⋊F5 | φ: D4/C1 → D4 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).10D4 | 320,203 |
(C2×Dic5).11D4 = (C22×C4)⋊F5 | φ: D4/C1 → D4 ⊆ Out C2×Dic5 | 80 | 4 | (C2xDic5).11D4 | 320,254 |
(C2×Dic5).12D4 = (D4×C10).C4 | φ: D4/C1 → D4 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).12D4 | 320,261 |
(C2×Dic5).13D4 = (Q8×C10).C4 | φ: D4/C1 → D4 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).13D4 | 320,267 |
(C2×Dic5).14D4 = C24⋊2F5 | φ: D4/C1 → D4 ⊆ Out C2×Dic5 | 40 | 4 | (C2xDic5).14D4 | 320,272 |
(C2×Dic5).15D4 = (C2×Dic5)⋊Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).15D4 | 320,283 |
(C2×Dic5).16D4 = C2.(C20⋊Q8) | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).16D4 | 320,284 |
(C2×Dic5).17D4 = (C2×Dic5).Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).17D4 | 320,285 |
(C2×Dic5).18D4 = (C2×C4).Dic10 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).18D4 | 320,287 |
(C2×Dic5).19D4 = C10.(C4⋊Q8) | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).19D4 | 320,288 |
(C2×Dic5).20D4 = (C2×C4).20D20 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).20D4 | 320,300 |
(C2×Dic5).21D4 = C10.(C4⋊D4) | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).21D4 | 320,302 |
(C2×Dic5).22D4 = (C22×D5).Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).22D4 | 320,303 |
(C2×Dic5).23D4 = C4⋊C4.D10 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).23D4 | 320,391 |
(C2×Dic5).24D4 = C20⋊Q8⋊C2 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).24D4 | 320,392 |
(C2×Dic5).25D4 = Dic10.D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).25D4 | 320,394 |
(C2×Dic5).26D4 = D4⋊D20 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).26D4 | 320,400 |
(C2×Dic5).27D4 = D10.12D8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).27D4 | 320,401 |
(C2×Dic5).28D4 = D20.8D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).28D4 | 320,403 |
(C2×Dic5).29D4 = D10.16SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).29D4 | 320,404 |
(C2×Dic5).30D4 = C5⋊2C8⋊D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).30D4 | 320,407 |
(C2×Dic5).31D4 = C5⋊(C8⋊2D4) | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).31D4 | 320,409 |
(C2×Dic5).32D4 = D20⋊3D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).32D4 | 320,413 |
(C2×Dic5).33D4 = D20.D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).33D4 | 320,414 |
(C2×Dic5).34D4 = Q8⋊C4⋊D5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).34D4 | 320,422 |
(C2×Dic5).35D4 = C40⋊8C4.C2 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).35D4 | 320,424 |
(C2×Dic5).36D4 = Dic10.11D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).36D4 | 320,425 |
(C2×Dic5).37D4 = D10.11SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).37D4 | 320,432 |
(C2×Dic5).38D4 = Q8⋊2D20 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).38D4 | 320,433 |
(C2×Dic5).39D4 = D10⋊4Q16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).39D4 | 320,435 |
(C2×Dic5).40D4 = D10.7Q16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).40D4 | 320,436 |
(C2×Dic5).41D4 = C5⋊(C8⋊D4) | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).41D4 | 320,439 |
(C2×Dic5).42D4 = C5⋊2C8.D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).42D4 | 320,443 |
(C2×Dic5).43D4 = Dic5⋊SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).43D4 | 320,445 |
(C2×Dic5).44D4 = D20.12D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).44D4 | 320,446 |
(C2×Dic5).45D4 = C42⋊D10 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | 4 | (C2xDic5).45D4 | 320,448 |
(C2×Dic5).46D4 = C40⋊3Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).46D4 | 320,483 |
(C2×Dic5).47D4 = Dic10.Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).47D4 | 320,484 |
(C2×Dic5).48D4 = D10.12SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).48D4 | 320,489 |
(C2×Dic5).49D4 = D10.17SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).49D4 | 320,490 |
(C2×Dic5).50D4 = C8⋊2D20 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).50D4 | 320,492 |
(C2×Dic5).51D4 = C8.2D20 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).51D4 | 320,495 |
(C2×Dic5).52D4 = D20⋊Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).52D4 | 320,497 |
(C2×Dic5).53D4 = D20.Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).53D4 | 320,498 |
(C2×Dic5).54D4 = C40⋊4Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).54D4 | 320,503 |
(C2×Dic5).55D4 = Dic10.2Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).55D4 | 320,504 |
(C2×Dic5).56D4 = D10.13D8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).56D4 | 320,509 |
(C2×Dic5).57D4 = D10.8Q16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).57D4 | 320,511 |
(C2×Dic5).58D4 = C8⋊3D20 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).58D4 | 320,513 |
(C2×Dic5).59D4 = D20⋊2Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).59D4 | 320,517 |
(C2×Dic5).60D4 = D20.2Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).60D4 | 320,518 |
(C2×Dic5).61D4 = C23⋊Dic10 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).61D4 | 320,574 |
(C2×Dic5).62D4 = C24.6D10 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).62D4 | 320,575 |
(C2×Dic5).63D4 = C24.7D10 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).63D4 | 320,576 |
(C2×Dic5).64D4 = C24.9D10 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).64D4 | 320,579 |
(C2×Dic5).65D4 = C24.16D10 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).65D4 | 320,588 |
(C2×Dic5).66D4 = (C2×C4)⋊Dic10 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).66D4 | 320,606 |
(C2×Dic5).67D4 = (C2×C20).287D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).67D4 | 320,607 |
(C2×Dic5).68D4 = (C2×C20).54D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).68D4 | 320,611 |
(C2×Dic5).69D4 = (C2×C20).289D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).69D4 | 320,619 |
(C2×Dic5).70D4 = (C2×C20).56D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).70D4 | 320,621 |
(C2×Dic5).71D4 = (C2×D8).D5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).71D4 | 320,780 |
(C2×Dic5).72D4 = C40⋊11D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).72D4 | 320,781 |
(C2×Dic5).73D4 = D20⋊D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).73D4 | 320,783 |
(C2×Dic5).74D4 = C40⋊12D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).74D4 | 320,786 |
(C2×Dic5).75D4 = Dic5⋊5SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).75D4 | 320,790 |
(C2×Dic5).76D4 = (C5×D4).D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).76D4 | 320,792 |
(C2×Dic5).77D4 = (C5×Q8).D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).77D4 | 320,793 |
(C2×Dic5).78D4 = C40.31D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).78D4 | 320,794 |
(C2×Dic5).79D4 = D10⋊6SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).79D4 | 320,796 |
(C2×Dic5).80D4 = D10⋊8SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).80D4 | 320,797 |
(C2×Dic5).81D4 = C40⋊8D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).81D4 | 320,801 |
(C2×Dic5).82D4 = C40⋊9D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).82D4 | 320,803 |
(C2×Dic5).83D4 = (C2×Q16)⋊D5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).83D4 | 320,812 |
(C2×Dic5).84D4 = D10⋊5Q16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).84D4 | 320,813 |
(C2×Dic5).85D4 = C40.36D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).85D4 | 320,816 |
(C2×Dic5).86D4 = C40.37D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).86D4 | 320,817 |
(C2×Dic5).87D4 = C10.792- 1+4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).87D4 | 320,1320 |
(C2×Dic5).88D4 = Q16⋊D10 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | 4 | (C2xDic5).88D4 | 320,1440 |
(C2×Dic5).89D4 = D5×C8⋊C22 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 40 | 8+ | (C2xDic5).89D4 | 320,1444 |
(C2×Dic5).90D4 = D5×C8.C22 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).90D4 | 320,1448 |
(C2×Dic5).91D4 = C42⋊3F5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | 4 | (C2xDic5).91D4 | 320,201 |
(C2×Dic5).92D4 = D10.1D8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).92D4 | 320,206 |
(C2×Dic5).93D4 = D10.1Q16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).93D4 | 320,207 |
(C2×Dic5).94D4 = C10.C4≀C2 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).94D4 | 320,208 |
(C2×Dic5).95D4 = D20⋊C8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).95D4 | 320,209 |
(C2×Dic5).96D4 = Dic10⋊1C8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).96D4 | 320,210 |
(C2×Dic5).97D4 = Dic5.D8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).97D4 | 320,211 |
(C2×Dic5).98D4 = D10.18D8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).98D4 | 320,212 |
(C2×Dic5).99D4 = C20.25C42 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | 4 | (C2xDic5).99D4 | 320,235 |
(C2×Dic5).100D4 = M4(2).F5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | 8 | (C2xDic5).100D4 | 320,239 |
(C2×Dic5).101D4 = (C2×C20)⋊1C8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).101D4 | 320,251 |
(C2×Dic5).102D4 = (C22×C4).F5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).102D4 | 320,252 |
(C2×Dic5).103D4 = C5⋊(C23⋊C8) | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).103D4 | 320,253 |
(C2×Dic5).104D4 = C22.F5⋊C4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).104D4 | 320,257 |
(C2×Dic5).105D4 = D10.SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).105D4 | 320,258 |
(C2×Dic5).106D4 = (C2×D4).F5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).106D4 | 320,259 |
(C2×Dic5).107D4 = Dic5.23D8 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).107D4 | 320,262 |
(C2×Dic5).108D4 = Dic5.SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).108D4 | 320,263 |
(C2×Dic5).109D4 = D10.Q16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).109D4 | 320,264 |
(C2×Dic5).110D4 = (C2×Q8).F5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).110D4 | 320,265 |
(C2×Dic5).111D4 = Dic5.12Q16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).111D4 | 320,268 |
(C2×Dic5).112D4 = Dic5.Q16 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).112D4 | 320,269 |
(C2×Dic5).113D4 = C24.F5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).113D4 | 320,271 |
(C2×Dic5).114D4 = C20⋊C8⋊C2 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).114D4 | 320,1034 |
(C2×Dic5).115D4 = M4(2).1F5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | 8 | (C2xDic5).115D4 | 320,1067 |
(C2×Dic5).116D4 = C2×Dic5.D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).116D4 | 320,1098 |
(C2×Dic5).117D4 = C2×D20⋊C4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).117D4 | 320,1104 |
(C2×Dic5).118D4 = (D4×C10)⋊C4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 40 | 8+ | (C2xDic5).118D4 | 320,1105 |
(C2×Dic5).119D4 = (C2×D4).7F5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).119D4 | 320,1113 |
(C2×Dic5).120D4 = (C2×D4).9F5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).120D4 | 320,1115 |
(C2×Dic5).121D4 = C2×Q8⋊F5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).121D4 | 320,1119 |
(C2×Dic5).122D4 = (C2×Q8)⋊4F5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).122D4 | 320,1120 |
(C2×Dic5).123D4 = D5⋊C4≀C2 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 40 | 8 | (C2xDic5).123D4 | 320,1130 |
(C2×Dic5).124D4 = C4○D4⋊F5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 40 | 8 | (C2xDic5).124D4 | 320,1131 |
(C2×Dic5).125D4 = C4○D20⋊C4 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | 8 | (C2xDic5).125D4 | 320,1132 |
(C2×Dic5).126D4 = D4⋊F5⋊C2 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | 8 | (C2xDic5).126D4 | 320,1133 |
(C2×Dic5).127D4 = C2×C23.F5 | φ: D4/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).127D4 | 320,1137 |
(C2×Dic5).128D4 = C5⋊2(C42⋊8C4) | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).128D4 | 320,277 |
(C2×Dic5).129D4 = C10.54(C4×D4) | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).129D4 | 320,296 |
(C2×Dic5).130D4 = C10.55(C4×D4) | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).130D4 | 320,297 |
(C2×Dic5).131D4 = Dic5.5D8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).131D4 | 320,387 |
(C2×Dic5).132D4 = (C8×Dic5)⋊C2 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).132D4 | 320,395 |
(C2×Dic5).133D4 = D5×D4⋊C4 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).133D4 | 320,396 |
(C2×Dic5).134D4 = D10⋊D8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).134D4 | 320,402 |
(C2×Dic5).135D4 = D10⋊SD16 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).135D4 | 320,405 |
(C2×Dic5).136D4 = Dic5.3Q16 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).136D4 | 320,419 |
(C2×Dic5).137D4 = Q8⋊Dic5⋊C2 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).137D4 | 320,427 |
(C2×Dic5).138D4 = D5×Q8⋊C4 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).138D4 | 320,428 |
(C2×Dic5).139D4 = D10⋊2SD16 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).139D4 | 320,434 |
(C2×Dic5).140D4 = D10⋊Q16 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).140D4 | 320,440 |
(C2×Dic5).141D4 = C40⋊5Q8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).141D4 | 320,482 |
(C2×Dic5).142D4 = C8.8Dic10 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).142D4 | 320,485 |
(C2×Dic5).143D4 = D5×C4.Q8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).143D4 | 320,486 |
(C2×Dic5).144D4 = C8⋊8D20 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).144D4 | 320,491 |
(C2×Dic5).145D4 = C40⋊2Q8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).145D4 | 320,501 |
(C2×Dic5).146D4 = C8.6Dic10 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).146D4 | 320,505 |
(C2×Dic5).147D4 = D5×C2.D8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).147D4 | 320,506 |
(C2×Dic5).148D4 = C8⋊7D20 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).148D4 | 320,510 |
(C2×Dic5).149D4 = D10⋊2Q16 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).149D4 | 320,514 |
(C2×Dic5).150D4 = C24.3D10 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).150D4 | 320,571 |
(C2×Dic5).151D4 = C24.8D10 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).151D4 | 320,578 |
(C2×Dic5).152D4 = C20⋊4(C4⋊C4) | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).152D4 | 320,600 |
(C2×Dic5).153D4 = C20⋊5(C4⋊C4) | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).153D4 | 320,603 |
(C2×Dic5).154D4 = C20⋊6(C4⋊C4) | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).154D4 | 320,612 |
(C2×Dic5).155D4 = C40⋊5D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).155D4 | 320,778 |
(C2×Dic5).156D4 = C40.22D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).156D4 | 320,782 |
(C2×Dic5).157D4 = C40⋊6D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).157D4 | 320,784 |
(C2×Dic5).158D4 = C40.43D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).158D4 | 320,795 |
(C2×Dic5).159D4 = C40⋊14D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).159D4 | 320,798 |
(C2×Dic5).160D4 = C40⋊15D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).160D4 | 320,802 |
(C2×Dic5).161D4 = C40.26D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).161D4 | 320,808 |
(C2×Dic5).162D4 = D10⋊3Q16 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).162D4 | 320,815 |
(C2×Dic5).163D4 = C40.28D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).163D4 | 320,818 |
(C2×Dic5).164D4 = C2×Dic5.5D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).164D4 | 320,1163 |
(C2×Dic5).165D4 = C2×C20⋊Q8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).165D4 | 320,1169 |
(C2×Dic5).166D4 = C2×D5×D8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).166D4 | 320,1426 |
(C2×Dic5).167D4 = C2×D5×SD16 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).167D4 | 320,1430 |
(C2×Dic5).168D4 = C2×D5×Q16 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).168D4 | 320,1435 |
(C2×Dic5).169D4 = D5×C4○D8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 80 | 4 | (C2xDic5).169D4 | 320,1439 |
(C2×Dic5).170D4 = C40⋊2C8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).170D4 | 320,219 |
(C2×Dic5).171D4 = C40⋊1C8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).171D4 | 320,220 |
(C2×Dic5).172D4 = C20.26M4(2) | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).172D4 | 320,221 |
(C2×Dic5).173D4 = Dic5.13D8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).173D4 | 320,222 |
(C2×Dic5).174D4 = C20.10C42 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).174D4 | 320,234 |
(C2×Dic5).175D4 = C2×C40.C4 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).175D4 | 320,1060 |
(C2×Dic5).176D4 = C2×D10.Q8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).176D4 | 320,1061 |
(C2×Dic5).177D4 = (C8×D5).C4 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 80 | 4 | (C2xDic5).177D4 | 320,1062 |
(C2×Dic5).178D4 = C2×C20⋊C8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).178D4 | 320,1085 |
(C2×Dic5).179D4 = C2×Dic5⋊C8 | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).179D4 | 320,1090 |
(C2×Dic5).180D4 = C20⋊8M4(2) | φ: D4/C4 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).180D4 | 320,1096 |
(C2×Dic5).181D4 = (C2×C20)⋊Q8 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).181D4 | 320,273 |
(C2×Dic5).182D4 = C10.49(C4×D4) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).182D4 | 320,274 |
(C2×Dic5).183D4 = C10.51(C4×D4) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).183D4 | 320,279 |
(C2×Dic5).184D4 = C4⋊Dic5⋊15C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).184D4 | 320,281 |
(C2×Dic5).185D4 = C10.52(C4×D4) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).185D4 | 320,282 |
(C2×Dic5).186D4 = D10⋊2(C4⋊C4) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).186D4 | 320,294 |
(C2×Dic5).187D4 = D10⋊3(C4⋊C4) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).187D4 | 320,295 |
(C2×Dic5).188D4 = C23⋊C4⋊5D5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).188D4 | 320,367 |
(C2×Dic5).189D4 = D4.D5⋊5C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).189D4 | 320,384 |
(C2×Dic5).190D4 = Dic5.14D8 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).190D4 | 320,386 |
(C2×Dic5).191D4 = D4⋊Dic10 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).191D4 | 320,388 |
(C2×Dic5).192D4 = Dic10⋊2D4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).192D4 | 320,389 |
(C2×Dic5).193D4 = D4.Dic10 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).193D4 | 320,390 |
(C2×Dic5).194D4 = D4.2Dic10 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).194D4 | 320,393 |
(C2×Dic5).195D4 = (D4×D5)⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).195D4 | 320,397 |
(C2×Dic5).196D4 = D4⋊(C4×D5) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).196D4 | 320,398 |
(C2×Dic5).197D4 = C40⋊6C4⋊C2 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).197D4 | 320,406 |
(C2×Dic5).198D4 = D4⋊3D20 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).198D4 | 320,408 |
(C2×Dic5).199D4 = D4.D20 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).199D4 | 320,410 |
(C2×Dic5).200D4 = C40⋊5C4⋊C2 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).200D4 | 320,411 |
(C2×Dic5).201D4 = D4⋊D5⋊6C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).201D4 | 320,412 |
(C2×Dic5).202D4 = C5⋊Q16⋊5C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).202D4 | 320,416 |
(C2×Dic5).203D4 = Q8⋊Dic10 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).203D4 | 320,418 |
(C2×Dic5).204D4 = Dic5⋊Q16 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).204D4 | 320,420 |
(C2×Dic5).205D4 = Dic5.9Q16 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).205D4 | 320,421 |
(C2×Dic5).206D4 = Q8.Dic10 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).206D4 | 320,423 |
(C2×Dic5).207D4 = Q8.2Dic10 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).207D4 | 320,426 |
(C2×Dic5).208D4 = (Q8×D5)⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).208D4 | 320,429 |
(C2×Dic5).209D4 = Q8⋊(C4×D5) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).209D4 | 320,430 |
(C2×Dic5).210D4 = Q8.D20 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).210D4 | 320,437 |
(C2×Dic5).211D4 = D20⋊4D4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).211D4 | 320,438 |
(C2×Dic5).212D4 = (C2×C8).D10 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).212D4 | 320,441 |
(C2×Dic5).213D4 = D10⋊1C8.C2 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).213D4 | 320,442 |
(C2×Dic5).214D4 = Q8⋊D5⋊6C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).214D4 | 320,444 |
(C2×Dic5).215D4 = D5×C4≀C2 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 40 | 4 | (C2xDic5).215D4 | 320,447 |
(C2×Dic5).216D4 = Dic20⋊15C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).216D4 | 320,480 |
(C2×Dic5).217D4 = Dic10⋊Q8 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).217D4 | 320,481 |
(C2×Dic5).218D4 = C8⋊(C4×D5) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).218D4 | 320,488 |
(C2×Dic5).219D4 = C4.Q8⋊D5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).219D4 | 320,493 |
(C2×Dic5).220D4 = C20.(C4○D4) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).220D4 | 320,494 |
(C2×Dic5).221D4 = D40⋊15C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).221D4 | 320,496 |
(C2×Dic5).222D4 = Dic10⋊2Q8 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).222D4 | 320,502 |
(C2×Dic5).223D4 = C40⋊20(C2×C4) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).223D4 | 320,508 |
(C2×Dic5).224D4 = C2.D8⋊D5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).224D4 | 320,512 |
(C2×Dic5).225D4 = C2.D8⋊7D5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).225D4 | 320,515 |
(C2×Dic5).226D4 = C40⋊21(C2×C4) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).226D4 | 320,516 |
(C2×Dic5).227D4 = C24.44D10 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).227D4 | 320,569 |
(C2×Dic5).228D4 = C24.4D10 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).228D4 | 320,572 |
(C2×Dic5).229D4 = C24.46D10 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).229D4 | 320,573 |
(C2×Dic5).230D4 = C24.47D10 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).230D4 | 320,577 |
(C2×Dic5).231D4 = C10.96(C4×D4) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).231D4 | 320,599 |
(C2×Dic5).232D4 = C4⋊C4⋊5Dic5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).232D4 | 320,608 |
(C2×Dic5).233D4 = D10⋊5(C4⋊C4) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).233D4 | 320,616 |
(C2×Dic5).234D4 = C10.90(C4×D4) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).234D4 | 320,617 |
(C2×Dic5).235D4 = Dic5⋊D8 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).235D4 | 320,777 |
(C2×Dic5).236D4 = D8⋊Dic5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).236D4 | 320,779 |
(C2×Dic5).237D4 = Dic10⋊D4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).237D4 | 320,785 |
(C2×Dic5).238D4 = Dic5⋊3SD16 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).238D4 | 320,789 |
(C2×Dic5).239D4 = SD16⋊Dic5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).239D4 | 320,791 |
(C2×Dic5).240D4 = D20⋊7D4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).240D4 | 320,799 |
(C2×Dic5).241D4 = Dic10.16D4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).241D4 | 320,800 |
(C2×Dic5).242D4 = Dic5⋊3Q16 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).242D4 | 320,809 |
(C2×Dic5).243D4 = Q16⋊Dic5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).243D4 | 320,811 |
(C2×Dic5).244D4 = D20.17D4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).244D4 | 320,814 |
(C2×Dic5).245D4 = C2×Dic5.14D4 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).245D4 | 320,1153 |
(C2×Dic5).246D4 = C2×D10⋊Q8 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).246D4 | 320,1180 |
(C2×Dic5).247D4 = C2×D8⋊D5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).247D4 | 320,1427 |
(C2×Dic5).248D4 = C2×D40⋊C2 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).248D4 | 320,1431 |
(C2×Dic5).249D4 = C2×SD16⋊D5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).249D4 | 320,1432 |
(C2×Dic5).250D4 = C2×Q16⋊D5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).250D4 | 320,1436 |
(C2×Dic5).251D4 = SD16⋊D10 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).251D4 | 320,1445 |
(C2×Dic5).252D4 = D40⋊C22 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 80 | 8+ | (C2xDic5).252D4 | 320,1449 |
(C2×Dic5).253D4 = C42⋊6F5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 40 | 4 | (C2xDic5).253D4 | 320,200 |
(C2×Dic5).254D4 = C22⋊C4.F5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).254D4 | 320,205 |
(C2×Dic5).255D4 = C20.C42 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).255D4 | 320,213 |
(C2×Dic5).256D4 = C10.(C4⋊C8) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).256D4 | 320,256 |
(C2×Dic5).257D4 = C2×D10⋊C8 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).257D4 | 320,1089 |
(C2×Dic5).258D4 = D10⋊9M4(2) | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).258D4 | 320,1093 |
(C2×Dic5).259D4 = C2×D4⋊F5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).259D4 | 320,1106 |
(C2×Dic5).260D4 = (C2×D4)⋊6F5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).260D4 | 320,1107 |
(C2×Dic5).261D4 = C2×Q8⋊2F5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).261D4 | 320,1121 |
(C2×Dic5).262D4 = (C2×Q8)⋊6F5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 80 | 8+ | (C2xDic5).262D4 | 320,1122 |
(C2×Dic5).263D4 = C2×C23.2F5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).263D4 | 320,1135 |
(C2×Dic5).264D4 = C24.4F5 | φ: D4/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).264D4 | 320,1136 |
(C2×Dic5).265D4 = Dic5⋊2C42 | φ: trivial image | 320 | | (C2xDic5).265D4 | 320,276 |
(C2×Dic5).266D4 = D10⋊2C42 | φ: trivial image | 160 | | (C2xDic5).266D4 | 320,293 |
(C2×Dic5).267D4 = Dic5⋊4D8 | φ: trivial image | 160 | | (C2xDic5).267D4 | 320,383 |
(C2×Dic5).268D4 = Dic5⋊6SD16 | φ: trivial image | 160 | | (C2xDic5).268D4 | 320,385 |
(C2×Dic5).269D4 = D4⋊2D5⋊C4 | φ: trivial image | 160 | | (C2xDic5).269D4 | 320,399 |
(C2×Dic5).270D4 = Dic5⋊7SD16 | φ: trivial image | 160 | | (C2xDic5).270D4 | 320,415 |
(C2×Dic5).271D4 = Dic5⋊4Q16 | φ: trivial image | 320 | | (C2xDic5).271D4 | 320,417 |
(C2×Dic5).272D4 = Q8⋊2D5⋊C4 | φ: trivial image | 160 | | (C2xDic5).272D4 | 320,431 |
(C2×Dic5).273D4 = Dic5⋊8SD16 | φ: trivial image | 160 | | (C2xDic5).273D4 | 320,479 |
(C2×Dic5).274D4 = (C8×D5)⋊C4 | φ: trivial image | 160 | | (C2xDic5).274D4 | 320,487 |
(C2×Dic5).275D4 = D40⋊12C4 | φ: trivial image | 160 | | (C2xDic5).275D4 | 320,499 |
(C2×Dic5).276D4 = Dic5⋊5Q16 | φ: trivial image | 320 | | (C2xDic5).276D4 | 320,500 |
(C2×Dic5).277D4 = C8.27(C4×D5) | φ: trivial image | 160 | | (C2xDic5).277D4 | 320,507 |
(C2×Dic5).278D4 = C22⋊C4×Dic5 | φ: trivial image | 160 | | (C2xDic5).278D4 | 320,568 |
(C2×Dic5).279D4 = C4⋊C4×Dic5 | φ: trivial image | 320 | | (C2xDic5).279D4 | 320,602 |
(C2×Dic5).280D4 = D8×Dic5 | φ: trivial image | 160 | | (C2xDic5).280D4 | 320,776 |
(C2×Dic5).281D4 = SD16×Dic5 | φ: trivial image | 160 | | (C2xDic5).281D4 | 320,788 |
(C2×Dic5).282D4 = Q16×Dic5 | φ: trivial image | 320 | | (C2xDic5).282D4 | 320,810 |
(C2×Dic5).283D4 = C2×D8⋊3D5 | φ: trivial image | 160 | | (C2xDic5).283D4 | 320,1428 |
(C2×Dic5).284D4 = C2×SD16⋊3D5 | φ: trivial image | 160 | | (C2xDic5).284D4 | 320,1433 |
(C2×Dic5).285D4 = C2×Q8.D10 | φ: trivial image | 160 | | (C2xDic5).285D4 | 320,1437 |