Copied to
clipboard

?

G = C2×C20.C8order 320 = 26·5

Direct product of C2 and C20.C8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C20.C8, C102M5(2), C5⋊C163C22, (C2×C20).5C8, C53(C2×M5(2)), C20.43(C2×C8), C23.3(C5⋊C8), (C22×C10).6C8, (C22×C4).18F5, C4.55(C22×F5), C20.95(C22×C4), C10.17(C22×C8), (C22×C20).27C4, C52C8.40C23, C4.9(C2×C5⋊C8), (C2×C5⋊C16)⋊8C2, (C2×C4).6(C5⋊C8), C2.3(C22×C5⋊C8), C22.5(C2×C5⋊C8), (C2×C52C8).28C4, (C2×C10).32(C2×C8), C52C8.56(C2×C4), (C2×C4).168(C2×F5), (C2×C20).149(C2×C4), (C22×C52C8).21C2, (C2×C52C8).339C22, SmallGroup(320,1081)

Series: Derived Chief Lower central Upper central

C1C10 — C2×C20.C8
C1C5C10C20C52C8C5⋊C16C2×C5⋊C16 — C2×C20.C8
C5C10 — C2×C20.C8

Subgroups: 186 in 90 conjugacy classes, 60 normal (24 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×2], C4 [×2], C22, C22 [×2], C22 [×2], C5, C8 [×4], C2×C4 [×2], C2×C4 [×4], C23, C10, C10 [×2], C10 [×2], C16 [×4], C2×C8 [×6], C22×C4, C20 [×2], C20 [×2], C2×C10, C2×C10 [×2], C2×C10 [×2], C2×C16 [×2], M5(2) [×4], C22×C8, C52C8 [×2], C52C8 [×2], C2×C20 [×2], C2×C20 [×4], C22×C10, C2×M5(2), C5⋊C16 [×4], C2×C52C8 [×2], C2×C52C8 [×4], C22×C20, C2×C5⋊C16 [×2], C20.C8 [×4], C22×C52C8, C2×C20.C8

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C8 [×4], C2×C4 [×6], C23, C2×C8 [×6], C22×C4, F5, M5(2) [×2], C22×C8, C5⋊C8 [×4], C2×F5 [×3], C2×M5(2), C2×C5⋊C8 [×6], C22×F5, C20.C8 [×2], C22×C5⋊C8, C2×C20.C8

Generators and relations
 G = < a,b,c | a2=b20=1, c8=b10, ab=ba, ac=ca, cbc-1=b3 >

Smallest permutation representation
On 160 points
Generators in S160
(1 53)(2 54)(3 55)(4 56)(5 57)(6 58)(7 59)(8 60)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 130)(22 131)(23 132)(24 133)(25 134)(26 135)(27 136)(28 137)(29 138)(30 139)(31 140)(32 121)(33 122)(34 123)(35 124)(36 125)(37 126)(38 127)(39 128)(40 129)(61 142)(62 143)(63 144)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 141)(81 105)(82 106)(83 107)(84 108)(85 109)(86 110)(87 111)(88 112)(89 113)(90 114)(91 115)(92 116)(93 117)(94 118)(95 119)(96 120)(97 101)(98 102)(99 103)(100 104)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 154 139 96 58 68 35 115 11 144 129 86 48 78 25 105)(2 141 128 99 59 75 24 118 12 151 138 89 49 65 34 108)(3 148 137 82 60 62 33 101 13 158 127 92 50 72 23 111)(4 155 126 85 41 69 22 104 14 145 136 95 51 79 32 114)(5 142 135 88 42 76 31 107 15 152 125 98 52 66 21 117)(6 149 124 91 43 63 40 110 16 159 134 81 53 73 30 120)(7 156 133 94 44 70 29 113 17 146 123 84 54 80 39 103)(8 143 122 97 45 77 38 116 18 153 132 87 55 67 28 106)(9 150 131 100 46 64 27 119 19 160 121 90 56 74 37 109)(10 157 140 83 47 71 36 102 20 147 130 93 57 61 26 112)

G:=sub<Sym(160)| (1,53)(2,54)(3,55)(4,56)(5,57)(6,58)(7,59)(8,60)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,130)(22,131)(23,132)(24,133)(25,134)(26,135)(27,136)(28,137)(29,138)(30,139)(31,140)(32,121)(33,122)(34,123)(35,124)(36,125)(37,126)(38,127)(39,128)(40,129)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,141)(81,105)(82,106)(83,107)(84,108)(85,109)(86,110)(87,111)(88,112)(89,113)(90,114)(91,115)(92,116)(93,117)(94,118)(95,119)(96,120)(97,101)(98,102)(99,103)(100,104), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,154,139,96,58,68,35,115,11,144,129,86,48,78,25,105)(2,141,128,99,59,75,24,118,12,151,138,89,49,65,34,108)(3,148,137,82,60,62,33,101,13,158,127,92,50,72,23,111)(4,155,126,85,41,69,22,104,14,145,136,95,51,79,32,114)(5,142,135,88,42,76,31,107,15,152,125,98,52,66,21,117)(6,149,124,91,43,63,40,110,16,159,134,81,53,73,30,120)(7,156,133,94,44,70,29,113,17,146,123,84,54,80,39,103)(8,143,122,97,45,77,38,116,18,153,132,87,55,67,28,106)(9,150,131,100,46,64,27,119,19,160,121,90,56,74,37,109)(10,157,140,83,47,71,36,102,20,147,130,93,57,61,26,112)>;

G:=Group( (1,53)(2,54)(3,55)(4,56)(5,57)(6,58)(7,59)(8,60)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,130)(22,131)(23,132)(24,133)(25,134)(26,135)(27,136)(28,137)(29,138)(30,139)(31,140)(32,121)(33,122)(34,123)(35,124)(36,125)(37,126)(38,127)(39,128)(40,129)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,141)(81,105)(82,106)(83,107)(84,108)(85,109)(86,110)(87,111)(88,112)(89,113)(90,114)(91,115)(92,116)(93,117)(94,118)(95,119)(96,120)(97,101)(98,102)(99,103)(100,104), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,154,139,96,58,68,35,115,11,144,129,86,48,78,25,105)(2,141,128,99,59,75,24,118,12,151,138,89,49,65,34,108)(3,148,137,82,60,62,33,101,13,158,127,92,50,72,23,111)(4,155,126,85,41,69,22,104,14,145,136,95,51,79,32,114)(5,142,135,88,42,76,31,107,15,152,125,98,52,66,21,117)(6,149,124,91,43,63,40,110,16,159,134,81,53,73,30,120)(7,156,133,94,44,70,29,113,17,146,123,84,54,80,39,103)(8,143,122,97,45,77,38,116,18,153,132,87,55,67,28,106)(9,150,131,100,46,64,27,119,19,160,121,90,56,74,37,109)(10,157,140,83,47,71,36,102,20,147,130,93,57,61,26,112) );

G=PermutationGroup([(1,53),(2,54),(3,55),(4,56),(5,57),(6,58),(7,59),(8,60),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,130),(22,131),(23,132),(24,133),(25,134),(26,135),(27,136),(28,137),(29,138),(30,139),(31,140),(32,121),(33,122),(34,123),(35,124),(36,125),(37,126),(38,127),(39,128),(40,129),(61,142),(62,143),(63,144),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,141),(81,105),(82,106),(83,107),(84,108),(85,109),(86,110),(87,111),(88,112),(89,113),(90,114),(91,115),(92,116),(93,117),(94,118),(95,119),(96,120),(97,101),(98,102),(99,103),(100,104)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,154,139,96,58,68,35,115,11,144,129,86,48,78,25,105),(2,141,128,99,59,75,24,118,12,151,138,89,49,65,34,108),(3,148,137,82,60,62,33,101,13,158,127,92,50,72,23,111),(4,155,126,85,41,69,22,104,14,145,136,95,51,79,32,114),(5,142,135,88,42,76,31,107,15,152,125,98,52,66,21,117),(6,149,124,91,43,63,40,110,16,159,134,81,53,73,30,120),(7,156,133,94,44,70,29,113,17,146,123,84,54,80,39,103),(8,143,122,97,45,77,38,116,18,153,132,87,55,67,28,106),(9,150,131,100,46,64,27,119,19,160,121,90,56,74,37,109),(10,157,140,83,47,71,36,102,20,147,130,93,57,61,26,112)])

Matrix representation G ⊆ GL6(𝔽241)

100000
010000
00240000
00024000
00002400
00000240
,
17700000
236640000
001316400
00177000
001161170110
00587195195
,
177960000
43640000
0000190240
00646421
00831851770
002072151310

G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[177,236,0,0,0,0,0,64,0,0,0,0,0,0,131,177,116,58,0,0,64,0,117,7,0,0,0,0,0,195,0,0,0,0,110,195],[177,43,0,0,0,0,96,64,0,0,0,0,0,0,0,64,83,207,0,0,0,64,185,215,0,0,190,2,177,131,0,0,240,1,0,0] >;

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F 5 8A···8H8I8J8K8L10A···10G16A···16P20A···20H
order12222244444458···8888810···1016···1620···20
size11112211112245···5101010104···410···104···4

56 irreducible representations

dim11111111244444
type+++++-+-
imageC1C2C2C2C4C4C8C8M5(2)F5C5⋊C8C2×F5C5⋊C8C20.C8
kernelC2×C20.C8C2×C5⋊C16C20.C8C22×C52C8C2×C52C8C22×C20C2×C20C22×C10C10C22×C4C2×C4C2×C4C23C2
# reps124162124813318

In GAP, Magma, Sage, TeX

C_2\times C_{20}.C_8
% in TeX

G:=Group("C2xC20.C8");
// GroupNames label

G:=SmallGroup(320,1081);
// by ID

G=gap.SmallGroup(320,1081);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,758,80,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c|a^2=b^20=1,c^8=b^10,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

׿
×
𝔽