Copied to
clipboard

?

G = C2×C202D4order 320 = 26·5

Direct product of C2 and C202D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C202D4, C24.39D10, C207(C2×D4), D104(C2×D4), (C2×C20)⋊12D4, (C2×D4)⋊36D10, (C22×D4)⋊6D5, C104(C4⋊D4), (C22×D5)⋊12D4, (D4×C10)⋊43C22, C4⋊Dic577C22, C22.147(D4×D5), (C2×C10).295C24, (C2×C20).542C23, (C22×C4).379D10, C10.142(C22×D4), C23.D561C22, (C23×C10).76C22, C22.308(C23×D5), C23.337(C22×D5), C22.79(D42D5), (C22×C20).275C22, (C22×C10).419C23, (C2×Dic5).152C23, (C23×D5).125C22, (C22×D5).249C23, (C22×Dic5).163C22, (D4×C2×C10)⋊4C2, C43(C2×C5⋊D4), C55(C2×C4⋊D4), C2.102(C2×D4×D5), (D5×C22×C4)⋊6C2, (C2×C4×D5)⋊57C22, (C2×C4)⋊13(C5⋊D4), (C2×C4⋊Dic5)⋊45C2, C10.105(C2×C4○D4), C2.69(C2×D42D5), (C2×C10).580(C2×D4), (C2×C5⋊D4)⋊44C22, (C22×C5⋊D4)⋊13C2, (C2×C23.D5)⋊28C2, C2.15(C22×C5⋊D4), (C2×C4).625(C22×D5), C22.110(C2×C5⋊D4), (C2×C10).177(C4○D4), SmallGroup(320,1472)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×C202D4
C1C5C10C2×C10C22×D5C23×D5D5×C22×C4 — C2×C202D4
C5C2×C10 — C2×C202D4

Subgroups: 1486 in 426 conjugacy classes, 135 normal (21 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C4 [×4], C4 [×6], C22, C22 [×6], C22 [×36], C5, C2×C4 [×6], C2×C4 [×20], D4 [×24], C23, C23 [×4], C23 [×22], D5 [×4], C10 [×3], C10 [×4], C10 [×4], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4, C22×C4 [×11], C2×D4 [×4], C2×D4 [×20], C24 [×2], C24, Dic5 [×6], C20 [×4], D10 [×4], D10 [×12], C2×C10, C2×C10 [×6], C2×C10 [×20], C2×C22⋊C4 [×2], C2×C4⋊C4, C4⋊D4 [×8], C23×C4, C22×D4, C22×D4 [×2], C4×D5 [×8], C2×Dic5 [×6], C2×Dic5 [×6], C5⋊D4 [×16], C2×C20 [×6], C5×D4 [×8], C22×D5 [×6], C22×D5 [×4], C22×C10, C22×C10 [×4], C22×C10 [×12], C2×C4⋊D4, C4⋊Dic5 [×4], C23.D5 [×8], C2×C4×D5 [×4], C2×C4×D5 [×4], C22×Dic5, C22×Dic5 [×2], C2×C5⋊D4 [×8], C2×C5⋊D4 [×8], C22×C20, D4×C10 [×4], D4×C10 [×4], C23×D5, C23×C10 [×2], C2×C4⋊Dic5, C202D4 [×8], C2×C23.D5 [×2], D5×C22×C4, C22×C5⋊D4 [×2], D4×C2×C10, C2×C202D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], D5, C2×D4 [×12], C4○D4 [×2], C24, D10 [×7], C4⋊D4 [×4], C22×D4 [×2], C2×C4○D4, C5⋊D4 [×4], C22×D5 [×7], C2×C4⋊D4, D4×D5 [×2], D42D5 [×2], C2×C5⋊D4 [×6], C23×D5, C202D4 [×4], C2×D4×D5, C2×D42D5, C22×C5⋊D4, C2×C202D4

Generators and relations
 G = < a,b,c,d | a2=b20=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd=b9, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(41 79)(42 80)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 73)(56 74)(57 75)(58 76)(59 77)(60 78)(81 113)(82 114)(83 115)(84 116)(85 117)(86 118)(87 119)(88 120)(89 101)(90 102)(91 103)(92 104)(93 105)(94 106)(95 107)(96 108)(97 109)(98 110)(99 111)(100 112)(121 153)(122 154)(123 155)(124 156)(125 157)(126 158)(127 159)(128 160)(129 141)(130 142)(131 143)(132 144)(133 145)(134 146)(135 147)(136 148)(137 149)(138 150)(139 151)(140 152)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 67 122 113)(2 66 123 112)(3 65 124 111)(4 64 125 110)(5 63 126 109)(6 62 127 108)(7 61 128 107)(8 80 129 106)(9 79 130 105)(10 78 131 104)(11 77 132 103)(12 76 133 102)(13 75 134 101)(14 74 135 120)(15 73 136 119)(16 72 137 118)(17 71 138 117)(18 70 139 116)(19 69 140 115)(20 68 121 114)(21 43 160 95)(22 42 141 94)(23 41 142 93)(24 60 143 92)(25 59 144 91)(26 58 145 90)(27 57 146 89)(28 56 147 88)(29 55 148 87)(30 54 149 86)(31 53 150 85)(32 52 151 84)(33 51 152 83)(34 50 153 82)(35 49 154 81)(36 48 155 100)(37 47 156 99)(38 46 157 98)(39 45 158 97)(40 44 159 96)
(1 25)(2 34)(3 23)(4 32)(5 21)(6 30)(7 39)(8 28)(9 37)(10 26)(11 35)(12 24)(13 33)(14 22)(15 31)(16 40)(17 29)(18 38)(19 27)(20 36)(41 111)(42 120)(43 109)(44 118)(45 107)(46 116)(47 105)(48 114)(49 103)(50 112)(51 101)(52 110)(53 119)(54 108)(55 117)(56 106)(57 115)(58 104)(59 113)(60 102)(61 97)(62 86)(63 95)(64 84)(65 93)(66 82)(67 91)(68 100)(69 89)(70 98)(71 87)(72 96)(73 85)(74 94)(75 83)(76 92)(77 81)(78 90)(79 99)(80 88)(121 155)(122 144)(123 153)(124 142)(125 151)(126 160)(127 149)(128 158)(129 147)(130 156)(131 145)(132 154)(133 143)(134 152)(135 141)(136 150)(137 159)(138 148)(139 157)(140 146)

G:=sub<Sym(160)| (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(41,79)(42,80)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(81,113)(82,114)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,101)(90,102)(91,103)(92,104)(93,105)(94,106)(95,107)(96,108)(97,109)(98,110)(99,111)(100,112)(121,153)(122,154)(123,155)(124,156)(125,157)(126,158)(127,159)(128,160)(129,141)(130,142)(131,143)(132,144)(133,145)(134,146)(135,147)(136,148)(137,149)(138,150)(139,151)(140,152), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,67,122,113)(2,66,123,112)(3,65,124,111)(4,64,125,110)(5,63,126,109)(6,62,127,108)(7,61,128,107)(8,80,129,106)(9,79,130,105)(10,78,131,104)(11,77,132,103)(12,76,133,102)(13,75,134,101)(14,74,135,120)(15,73,136,119)(16,72,137,118)(17,71,138,117)(18,70,139,116)(19,69,140,115)(20,68,121,114)(21,43,160,95)(22,42,141,94)(23,41,142,93)(24,60,143,92)(25,59,144,91)(26,58,145,90)(27,57,146,89)(28,56,147,88)(29,55,148,87)(30,54,149,86)(31,53,150,85)(32,52,151,84)(33,51,152,83)(34,50,153,82)(35,49,154,81)(36,48,155,100)(37,47,156,99)(38,46,157,98)(39,45,158,97)(40,44,159,96), (1,25)(2,34)(3,23)(4,32)(5,21)(6,30)(7,39)(8,28)(9,37)(10,26)(11,35)(12,24)(13,33)(14,22)(15,31)(16,40)(17,29)(18,38)(19,27)(20,36)(41,111)(42,120)(43,109)(44,118)(45,107)(46,116)(47,105)(48,114)(49,103)(50,112)(51,101)(52,110)(53,119)(54,108)(55,117)(56,106)(57,115)(58,104)(59,113)(60,102)(61,97)(62,86)(63,95)(64,84)(65,93)(66,82)(67,91)(68,100)(69,89)(70,98)(71,87)(72,96)(73,85)(74,94)(75,83)(76,92)(77,81)(78,90)(79,99)(80,88)(121,155)(122,144)(123,153)(124,142)(125,151)(126,160)(127,149)(128,158)(129,147)(130,156)(131,145)(132,154)(133,143)(134,152)(135,141)(136,150)(137,159)(138,148)(139,157)(140,146)>;

G:=Group( (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(41,79)(42,80)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(81,113)(82,114)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,101)(90,102)(91,103)(92,104)(93,105)(94,106)(95,107)(96,108)(97,109)(98,110)(99,111)(100,112)(121,153)(122,154)(123,155)(124,156)(125,157)(126,158)(127,159)(128,160)(129,141)(130,142)(131,143)(132,144)(133,145)(134,146)(135,147)(136,148)(137,149)(138,150)(139,151)(140,152), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,67,122,113)(2,66,123,112)(3,65,124,111)(4,64,125,110)(5,63,126,109)(6,62,127,108)(7,61,128,107)(8,80,129,106)(9,79,130,105)(10,78,131,104)(11,77,132,103)(12,76,133,102)(13,75,134,101)(14,74,135,120)(15,73,136,119)(16,72,137,118)(17,71,138,117)(18,70,139,116)(19,69,140,115)(20,68,121,114)(21,43,160,95)(22,42,141,94)(23,41,142,93)(24,60,143,92)(25,59,144,91)(26,58,145,90)(27,57,146,89)(28,56,147,88)(29,55,148,87)(30,54,149,86)(31,53,150,85)(32,52,151,84)(33,51,152,83)(34,50,153,82)(35,49,154,81)(36,48,155,100)(37,47,156,99)(38,46,157,98)(39,45,158,97)(40,44,159,96), (1,25)(2,34)(3,23)(4,32)(5,21)(6,30)(7,39)(8,28)(9,37)(10,26)(11,35)(12,24)(13,33)(14,22)(15,31)(16,40)(17,29)(18,38)(19,27)(20,36)(41,111)(42,120)(43,109)(44,118)(45,107)(46,116)(47,105)(48,114)(49,103)(50,112)(51,101)(52,110)(53,119)(54,108)(55,117)(56,106)(57,115)(58,104)(59,113)(60,102)(61,97)(62,86)(63,95)(64,84)(65,93)(66,82)(67,91)(68,100)(69,89)(70,98)(71,87)(72,96)(73,85)(74,94)(75,83)(76,92)(77,81)(78,90)(79,99)(80,88)(121,155)(122,144)(123,153)(124,142)(125,151)(126,160)(127,149)(128,158)(129,147)(130,156)(131,145)(132,154)(133,143)(134,152)(135,141)(136,150)(137,159)(138,148)(139,157)(140,146) );

G=PermutationGroup([(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(41,79),(42,80),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,73),(56,74),(57,75),(58,76),(59,77),(60,78),(81,113),(82,114),(83,115),(84,116),(85,117),(86,118),(87,119),(88,120),(89,101),(90,102),(91,103),(92,104),(93,105),(94,106),(95,107),(96,108),(97,109),(98,110),(99,111),(100,112),(121,153),(122,154),(123,155),(124,156),(125,157),(126,158),(127,159),(128,160),(129,141),(130,142),(131,143),(132,144),(133,145),(134,146),(135,147),(136,148),(137,149),(138,150),(139,151),(140,152)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,67,122,113),(2,66,123,112),(3,65,124,111),(4,64,125,110),(5,63,126,109),(6,62,127,108),(7,61,128,107),(8,80,129,106),(9,79,130,105),(10,78,131,104),(11,77,132,103),(12,76,133,102),(13,75,134,101),(14,74,135,120),(15,73,136,119),(16,72,137,118),(17,71,138,117),(18,70,139,116),(19,69,140,115),(20,68,121,114),(21,43,160,95),(22,42,141,94),(23,41,142,93),(24,60,143,92),(25,59,144,91),(26,58,145,90),(27,57,146,89),(28,56,147,88),(29,55,148,87),(30,54,149,86),(31,53,150,85),(32,52,151,84),(33,51,152,83),(34,50,153,82),(35,49,154,81),(36,48,155,100),(37,47,156,99),(38,46,157,98),(39,45,158,97),(40,44,159,96)], [(1,25),(2,34),(3,23),(4,32),(5,21),(6,30),(7,39),(8,28),(9,37),(10,26),(11,35),(12,24),(13,33),(14,22),(15,31),(16,40),(17,29),(18,38),(19,27),(20,36),(41,111),(42,120),(43,109),(44,118),(45,107),(46,116),(47,105),(48,114),(49,103),(50,112),(51,101),(52,110),(53,119),(54,108),(55,117),(56,106),(57,115),(58,104),(59,113),(60,102),(61,97),(62,86),(63,95),(64,84),(65,93),(66,82),(67,91),(68,100),(69,89),(70,98),(71,87),(72,96),(73,85),(74,94),(75,83),(76,92),(77,81),(78,90),(79,99),(80,88),(121,155),(122,144),(123,153),(124,142),(125,151),(126,160),(127,149),(128,158),(129,147),(130,156),(131,145),(132,154),(133,143),(134,152),(135,141),(136,150),(137,159),(138,148),(139,157),(140,146)])

Matrix representation G ⊆ GL5(𝔽41)

400000
01000
00100
00010
00001
,
400000
040200
040100
000740
00010
,
10000
040200
00100
00033
0002438
,
10000
040000
004000
000734
000134

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[40,0,0,0,0,0,40,40,0,0,0,2,1,0,0,0,0,0,7,1,0,0,0,40,0],[1,0,0,0,0,0,40,0,0,0,0,2,1,0,0,0,0,0,3,24,0,0,0,3,38],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,7,1,0,0,0,34,34] >;

68 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O4A4B4C4D4E4F4G4H4I4J4K4L5A5B10A···10N10O···10AD20A···20H
order12···2222222224444444444445510···1010···1020···20
size11···144441010101022221010101020202020222···24···44···4

68 irreducible representations

dim11111112222222244
type++++++++++++++-
imageC1C2C2C2C2C2C2D4D4D5C4○D4D10D10D10C5⋊D4D4×D5D42D5
kernelC2×C202D4C2×C4⋊Dic5C202D4C2×C23.D5D5×C22×C4C22×C5⋊D4D4×C2×C10C2×C20C22×D5C22×D4C2×C10C22×C4C2×D4C24C2×C4C22C22
# reps118212144242841644

In GAP, Magma, Sage, TeX

C_2\times C_{20}\rtimes_2D_4
% in TeX

G:=Group("C2xC20:2D4");
// GroupNames label

G:=SmallGroup(320,1472);
// by ID

G=gap.SmallGroup(320,1472);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,675,297,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d=b^9,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽