direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C20⋊D4, C24.40D10, C20⋊9(C2×D4), (C2×C20)⋊13D4, (C2×D4)⋊39D10, Dic5⋊2(C2×D4), (C22×D4)⋊9D5, C10⋊2(C4⋊1D4), (C2×Dic5)⋊14D4, (C22×D20)⋊19C2, (C2×D20)⋊56C22, (D4×C10)⋊44C22, C22.149(D4×D5), (C2×C10).298C24, (C2×C20).544C23, (C4×Dic5)⋊68C22, C10.145(C22×D4), (C22×C4).380D10, (C23×C10).78C22, (C23×D5).77C22, C23.135(C22×D5), C22.311(C23×D5), (C22×C10).232C23, (C22×C20).276C22, (C2×Dic5).295C23, (C22×D5).129C23, (C22×Dic5).255C22, (D4×C2×C10)⋊6C2, C4⋊1(C2×C5⋊D4), C5⋊3(C2×C4⋊1D4), C2.105(C2×D4×D5), (C2×C4×Dic5)⋊12C2, (C2×C4)⋊10(C5⋊D4), (C2×C10).581(C2×D4), (C2×C5⋊D4)⋊47C22, (C22×C5⋊D4)⋊16C2, C2.18(C22×C5⋊D4), (C2×C4).627(C22×D5), C22.111(C2×C5⋊D4), SmallGroup(320,1475)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 2014 in 498 conjugacy classes, 143 normal (15 characteristic)
C1, C2, C2 [×6], C2 [×8], C4 [×4], C4 [×8], C22, C22 [×6], C22 [×40], C5, C2×C4 [×6], C2×C4 [×12], D4 [×48], C23, C23 [×4], C23 [×28], D5 [×4], C10, C10 [×6], C10 [×4], C42 [×4], C22×C4, C22×C4 [×2], C2×D4 [×4], C2×D4 [×44], C24 [×2], C24 [×2], Dic5 [×8], C20 [×4], D10 [×20], C2×C10, C2×C10 [×6], C2×C10 [×20], C2×C42, C4⋊1D4 [×8], C22×D4, C22×D4 [×5], D20 [×8], C2×Dic5 [×12], C5⋊D4 [×32], C2×C20 [×6], C5×D4 [×8], C22×D5 [×4], C22×D5 [×12], C22×C10, C22×C10 [×4], C22×C10 [×12], C2×C4⋊1D4, C4×Dic5 [×4], C2×D20 [×4], C2×D20 [×4], C22×Dic5 [×2], C2×C5⋊D4 [×16], C2×C5⋊D4 [×16], C22×C20, D4×C10 [×4], D4×C10 [×4], C23×D5 [×2], C23×C10 [×2], C2×C4×Dic5, C20⋊D4 [×8], C22×D20, C22×C5⋊D4 [×4], D4×C2×C10, C2×C20⋊D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×12], C23 [×15], D5, C2×D4 [×18], C24, D10 [×7], C4⋊1D4 [×4], C22×D4 [×3], C5⋊D4 [×4], C22×D5 [×7], C2×C4⋊1D4, D4×D5 [×4], C2×C5⋊D4 [×6], C23×D5, C20⋊D4 [×4], C2×D4×D5 [×2], C22×C5⋊D4, C2×C20⋊D4
Generators and relations
G = < a,b,c,d | a2=b20=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b9, dbd=b-1, dcd=c-1 >
(1 67)(2 68)(3 69)(4 70)(5 71)(6 72)(7 73)(8 74)(9 75)(10 76)(11 77)(12 78)(13 79)(14 80)(15 61)(16 62)(17 63)(18 64)(19 65)(20 66)(21 53)(22 54)(23 55)(24 56)(25 57)(26 58)(27 59)(28 60)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)(37 49)(38 50)(39 51)(40 52)(81 160)(82 141)(83 142)(84 143)(85 144)(86 145)(87 146)(88 147)(89 148)(90 149)(91 150)(92 151)(93 152)(94 153)(95 154)(96 155)(97 156)(98 157)(99 158)(100 159)(101 121)(102 122)(103 123)(104 124)(105 125)(106 126)(107 127)(108 128)(109 129)(110 130)(111 131)(112 132)(113 133)(114 134)(115 135)(116 136)(117 137)(118 138)(119 139)(120 140)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 103 93 59)(2 112 94 48)(3 101 95 57)(4 110 96 46)(5 119 97 55)(6 108 98 44)(7 117 99 53)(8 106 100 42)(9 115 81 51)(10 104 82 60)(11 113 83 49)(12 102 84 58)(13 111 85 47)(14 120 86 56)(15 109 87 45)(16 118 88 54)(17 107 89 43)(18 116 90 52)(19 105 91 41)(20 114 92 50)(21 73 137 158)(22 62 138 147)(23 71 139 156)(24 80 140 145)(25 69 121 154)(26 78 122 143)(27 67 123 152)(28 76 124 141)(29 65 125 150)(30 74 126 159)(31 63 127 148)(32 72 128 157)(33 61 129 146)(34 70 130 155)(35 79 131 144)(36 68 132 153)(37 77 133 142)(38 66 134 151)(39 75 135 160)(40 64 136 149)
(1 83)(2 82)(3 81)(4 100)(5 99)(6 98)(7 97)(8 96)(9 95)(10 94)(11 93)(12 92)(13 91)(14 90)(15 89)(16 88)(17 87)(18 86)(19 85)(20 84)(21 23)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)(41 47)(42 46)(43 45)(48 60)(49 59)(50 58)(51 57)(52 56)(53 55)(61 148)(62 147)(63 146)(64 145)(65 144)(66 143)(67 142)(68 141)(69 160)(70 159)(71 158)(72 157)(73 156)(74 155)(75 154)(76 153)(77 152)(78 151)(79 150)(80 149)(101 115)(102 114)(103 113)(104 112)(105 111)(106 110)(107 109)(116 120)(117 119)(121 135)(122 134)(123 133)(124 132)(125 131)(126 130)(127 129)(136 140)(137 139)
G:=sub<Sym(160)| (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,73)(8,74)(9,75)(10,76)(11,77)(12,78)(13,79)(14,80)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(40,52)(81,160)(82,141)(83,142)(84,143)(85,144)(86,145)(87,146)(88,147)(89,148)(90,149)(91,150)(92,151)(93,152)(94,153)(95,154)(96,155)(97,156)(98,157)(99,158)(100,159)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(111,131)(112,132)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,103,93,59)(2,112,94,48)(3,101,95,57)(4,110,96,46)(5,119,97,55)(6,108,98,44)(7,117,99,53)(8,106,100,42)(9,115,81,51)(10,104,82,60)(11,113,83,49)(12,102,84,58)(13,111,85,47)(14,120,86,56)(15,109,87,45)(16,118,88,54)(17,107,89,43)(18,116,90,52)(19,105,91,41)(20,114,92,50)(21,73,137,158)(22,62,138,147)(23,71,139,156)(24,80,140,145)(25,69,121,154)(26,78,122,143)(27,67,123,152)(28,76,124,141)(29,65,125,150)(30,74,126,159)(31,63,127,148)(32,72,128,157)(33,61,129,146)(34,70,130,155)(35,79,131,144)(36,68,132,153)(37,77,133,142)(38,66,134,151)(39,75,135,160)(40,64,136,149), (1,83)(2,82)(3,81)(4,100)(5,99)(6,98)(7,97)(8,96)(9,95)(10,94)(11,93)(12,92)(13,91)(14,90)(15,89)(16,88)(17,87)(18,86)(19,85)(20,84)(21,23)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(41,47)(42,46)(43,45)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(61,148)(62,147)(63,146)(64,145)(65,144)(66,143)(67,142)(68,141)(69,160)(70,159)(71,158)(72,157)(73,156)(74,155)(75,154)(76,153)(77,152)(78,151)(79,150)(80,149)(101,115)(102,114)(103,113)(104,112)(105,111)(106,110)(107,109)(116,120)(117,119)(121,135)(122,134)(123,133)(124,132)(125,131)(126,130)(127,129)(136,140)(137,139)>;
G:=Group( (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,73)(8,74)(9,75)(10,76)(11,77)(12,78)(13,79)(14,80)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(40,52)(81,160)(82,141)(83,142)(84,143)(85,144)(86,145)(87,146)(88,147)(89,148)(90,149)(91,150)(92,151)(93,152)(94,153)(95,154)(96,155)(97,156)(98,157)(99,158)(100,159)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(111,131)(112,132)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,103,93,59)(2,112,94,48)(3,101,95,57)(4,110,96,46)(5,119,97,55)(6,108,98,44)(7,117,99,53)(8,106,100,42)(9,115,81,51)(10,104,82,60)(11,113,83,49)(12,102,84,58)(13,111,85,47)(14,120,86,56)(15,109,87,45)(16,118,88,54)(17,107,89,43)(18,116,90,52)(19,105,91,41)(20,114,92,50)(21,73,137,158)(22,62,138,147)(23,71,139,156)(24,80,140,145)(25,69,121,154)(26,78,122,143)(27,67,123,152)(28,76,124,141)(29,65,125,150)(30,74,126,159)(31,63,127,148)(32,72,128,157)(33,61,129,146)(34,70,130,155)(35,79,131,144)(36,68,132,153)(37,77,133,142)(38,66,134,151)(39,75,135,160)(40,64,136,149), (1,83)(2,82)(3,81)(4,100)(5,99)(6,98)(7,97)(8,96)(9,95)(10,94)(11,93)(12,92)(13,91)(14,90)(15,89)(16,88)(17,87)(18,86)(19,85)(20,84)(21,23)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(41,47)(42,46)(43,45)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(61,148)(62,147)(63,146)(64,145)(65,144)(66,143)(67,142)(68,141)(69,160)(70,159)(71,158)(72,157)(73,156)(74,155)(75,154)(76,153)(77,152)(78,151)(79,150)(80,149)(101,115)(102,114)(103,113)(104,112)(105,111)(106,110)(107,109)(116,120)(117,119)(121,135)(122,134)(123,133)(124,132)(125,131)(126,130)(127,129)(136,140)(137,139) );
G=PermutationGroup([(1,67),(2,68),(3,69),(4,70),(5,71),(6,72),(7,73),(8,74),(9,75),(10,76),(11,77),(12,78),(13,79),(14,80),(15,61),(16,62),(17,63),(18,64),(19,65),(20,66),(21,53),(22,54),(23,55),(24,56),(25,57),(26,58),(27,59),(28,60),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48),(37,49),(38,50),(39,51),(40,52),(81,160),(82,141),(83,142),(84,143),(85,144),(86,145),(87,146),(88,147),(89,148),(90,149),(91,150),(92,151),(93,152),(94,153),(95,154),(96,155),(97,156),(98,157),(99,158),(100,159),(101,121),(102,122),(103,123),(104,124),(105,125),(106,126),(107,127),(108,128),(109,129),(110,130),(111,131),(112,132),(113,133),(114,134),(115,135),(116,136),(117,137),(118,138),(119,139),(120,140)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,103,93,59),(2,112,94,48),(3,101,95,57),(4,110,96,46),(5,119,97,55),(6,108,98,44),(7,117,99,53),(8,106,100,42),(9,115,81,51),(10,104,82,60),(11,113,83,49),(12,102,84,58),(13,111,85,47),(14,120,86,56),(15,109,87,45),(16,118,88,54),(17,107,89,43),(18,116,90,52),(19,105,91,41),(20,114,92,50),(21,73,137,158),(22,62,138,147),(23,71,139,156),(24,80,140,145),(25,69,121,154),(26,78,122,143),(27,67,123,152),(28,76,124,141),(29,65,125,150),(30,74,126,159),(31,63,127,148),(32,72,128,157),(33,61,129,146),(34,70,130,155),(35,79,131,144),(36,68,132,153),(37,77,133,142),(38,66,134,151),(39,75,135,160),(40,64,136,149)], [(1,83),(2,82),(3,81),(4,100),(5,99),(6,98),(7,97),(8,96),(9,95),(10,94),(11,93),(12,92),(13,91),(14,90),(15,89),(16,88),(17,87),(18,86),(19,85),(20,84),(21,23),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33),(41,47),(42,46),(43,45),(48,60),(49,59),(50,58),(51,57),(52,56),(53,55),(61,148),(62,147),(63,146),(64,145),(65,144),(66,143),(67,142),(68,141),(69,160),(70,159),(71,158),(72,157),(73,156),(74,155),(75,154),(76,153),(77,152),(78,151),(79,150),(80,149),(101,115),(102,114),(103,113),(104,112),(105,111),(106,110),(107,109),(116,120),(117,119),(121,135),(122,134),(123,133),(124,132),(125,131),(126,130),(127,129),(136,140),(137,139)])
Matrix representation ►G ⊆ GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 1 | 0 | 0 |
0 | 0 | 5 | 35 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 2 |
0 | 0 | 0 | 0 | 40 | 1 |
25 | 32 | 0 | 0 | 0 | 0 |
24 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 21 | 17 | 0 | 0 |
0 | 0 | 15 | 20 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 39 |
0 | 0 | 0 | 0 | 1 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
40 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 1 | 0 | 0 |
0 | 0 | 6 | 35 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 40 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,5,0,0,0,0,1,35,0,0,0,0,0,0,40,40,0,0,0,0,2,1],[25,24,0,0,0,0,32,16,0,0,0,0,0,0,21,15,0,0,0,0,17,20,0,0,0,0,0,0,1,1,0,0,0,0,39,40],[40,40,0,0,0,0,0,1,0,0,0,0,0,0,6,6,0,0,0,0,1,35,0,0,0,0,0,0,1,1,0,0,0,0,0,40] >;
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10AD | 20A | ··· | 20H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | 2 | 10 | ··· | 10 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | D10 | D10 | D10 | C5⋊D4 | D4×D5 |
kernel | C2×C20⋊D4 | C2×C4×Dic5 | C20⋊D4 | C22×D20 | C22×C5⋊D4 | D4×C2×C10 | C2×Dic5 | C2×C20 | C22×D4 | C22×C4 | C2×D4 | C24 | C2×C4 | C22 |
# reps | 1 | 1 | 8 | 1 | 4 | 1 | 8 | 4 | 2 | 2 | 8 | 4 | 16 | 8 |
In GAP, Magma, Sage, TeX
C_2\times C_{20}\rtimes D_4
% in TeX
G:=Group("C2xC20:D4");
// GroupNames label
G:=SmallGroup(320,1475);
// by ID
G=gap.SmallGroup(320,1475);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,184,675,297,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^20=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^9,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations