direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×Dic5⋊D4, C24.59D10, (C2×D4)⋊38D10, Dic5⋊8(C2×D4), (C22×D4)⋊8D5, C10⋊5(C4⋊D4), (C2×Dic5)⋊22D4, (C22×C10)⋊12D4, C23⋊5(C5⋊D4), (D4×C10)⋊57C22, (C23×Dic5)⋊9C2, C22.148(D4×D5), (C2×C10).297C24, (C2×C20).643C23, C10.144(C22×D4), (C22×C4).271D10, C23.D5⋊63C22, D10⋊C4⋊72C22, C10.D4⋊74C22, (C23×C10).77C22, (C23×D5).76C22, C22.310(C23×D5), C23.338(C22×D5), C22.80(D4⋊2D5), (C22×C10).231C23, (C22×C20).438C22, (C2×Dic5).294C23, (C22×Dic5)⋊49C22, (C22×D5).128C23, C5⋊6(C2×C4⋊D4), (D4×C2×C10)⋊16C2, (C2×C10)⋊9(C2×D4), C2.104(C2×D4×D5), C22⋊1(C2×C5⋊D4), C10.106(C2×C4○D4), C2.70(C2×D4⋊2D5), (C2×C5⋊D4)⋊46C22, (C22×C5⋊D4)⋊15C2, (C2×C23.D5)⋊29C2, (C2×D10⋊C4)⋊42C2, C2.17(C22×C5⋊D4), (C2×C10.D4)⋊48C2, (C2×C4).237(C22×D5), (C2×C10).178(C4○D4), SmallGroup(320,1474)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 1486 in 426 conjugacy classes, 135 normal (31 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C4 [×10], C22, C22 [×10], C22 [×32], C5, C2×C4 [×2], C2×C4 [×24], D4 [×24], C23, C23 [×8], C23 [×18], D5 [×2], C10 [×3], C10 [×4], C10 [×6], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4, C22×C4 [×11], C2×D4 [×4], C2×D4 [×20], C24 [×2], C24, Dic5 [×4], Dic5 [×4], C20 [×2], D10 [×10], C2×C10, C2×C10 [×10], C2×C10 [×22], C2×C22⋊C4 [×2], C2×C4⋊C4, C4⋊D4 [×8], C23×C4, C22×D4, C22×D4 [×2], C2×Dic5 [×10], C2×Dic5 [×12], C5⋊D4 [×16], C2×C20 [×2], C2×C20 [×2], C5×D4 [×8], C22×D5 [×2], C22×D5 [×6], C22×C10, C22×C10 [×8], C22×C10 [×10], C2×C4⋊D4, C10.D4 [×4], D10⋊C4 [×4], C23.D5 [×4], C22×Dic5 [×3], C22×Dic5 [×4], C22×Dic5 [×4], C2×C5⋊D4 [×8], C2×C5⋊D4 [×8], C22×C20, D4×C10 [×4], D4×C10 [×4], C23×D5, C23×C10 [×2], C2×C10.D4, C2×D10⋊C4, Dic5⋊D4 [×8], C2×C23.D5, C23×Dic5, C22×C5⋊D4 [×2], D4×C2×C10, C2×Dic5⋊D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], D5, C2×D4 [×12], C4○D4 [×2], C24, D10 [×7], C4⋊D4 [×4], C22×D4 [×2], C2×C4○D4, C5⋊D4 [×4], C22×D5 [×7], C2×C4⋊D4, D4×D5 [×2], D4⋊2D5 [×2], C2×C5⋊D4 [×6], C23×D5, Dic5⋊D4 [×4], C2×D4×D5, C2×D4⋊2D5, C22×C5⋊D4, C2×Dic5⋊D4
Generators and relations
G = < a,b,c,d,e | a2=b10=d4=e2=1, c2=b5, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, dcd-1=b5c, ce=ec, ede=d-1 >
(1 107)(2 108)(3 109)(4 110)(5 101)(6 102)(7 103)(8 104)(9 105)(10 106)(11 74)(12 75)(13 76)(14 77)(15 78)(16 79)(17 80)(18 71)(19 72)(20 73)(21 100)(22 91)(23 92)(24 93)(25 94)(26 95)(27 96)(28 97)(29 98)(30 99)(31 122)(32 123)(33 124)(34 125)(35 126)(36 127)(37 128)(38 129)(39 130)(40 121)(41 120)(42 111)(43 112)(44 113)(45 114)(46 115)(47 116)(48 117)(49 118)(50 119)(51 142)(52 143)(53 144)(54 145)(55 146)(56 147)(57 148)(58 149)(59 150)(60 141)(61 140)(62 131)(63 132)(64 133)(65 134)(66 135)(67 136)(68 137)(69 138)(70 139)(81 160)(82 151)(83 152)(84 153)(85 154)(86 155)(87 156)(88 157)(89 158)(90 159)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 47 6 42)(2 46 7 41)(3 45 8 50)(4 44 9 49)(5 43 10 48)(11 133 16 138)(12 132 17 137)(13 131 18 136)(14 140 19 135)(15 139 20 134)(21 32 26 37)(22 31 27 36)(23 40 28 35)(24 39 29 34)(25 38 30 33)(51 82 56 87)(52 81 57 86)(53 90 58 85)(54 89 59 84)(55 88 60 83)(61 72 66 77)(62 71 67 76)(63 80 68 75)(64 79 69 74)(65 78 70 73)(91 122 96 127)(92 121 97 126)(93 130 98 125)(94 129 99 124)(95 128 100 123)(101 112 106 117)(102 111 107 116)(103 120 108 115)(104 119 109 114)(105 118 110 113)(141 152 146 157)(142 151 147 156)(143 160 148 155)(144 159 149 154)(145 158 150 153)
(1 87 27 76)(2 88 28 77)(3 89 29 78)(4 90 30 79)(5 81 21 80)(6 82 22 71)(7 83 23 72)(8 84 24 73)(9 85 25 74)(10 86 26 75)(11 105 154 94)(12 106 155 95)(13 107 156 96)(14 108 157 97)(15 109 158 98)(16 110 159 99)(17 101 160 100)(18 102 151 91)(19 103 152 92)(20 104 153 93)(31 62 42 51)(32 63 43 52)(33 64 44 53)(34 65 45 54)(35 66 46 55)(36 67 47 56)(37 68 48 57)(38 69 49 58)(39 70 50 59)(40 61 41 60)(111 142 122 131)(112 143 123 132)(113 144 124 133)(114 145 125 134)(115 146 126 135)(116 147 127 136)(117 148 128 137)(118 149 129 138)(119 150 130 139)(120 141 121 140)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 51)(7 52)(8 53)(9 54)(10 55)(11 125)(12 126)(13 127)(14 128)(15 129)(16 130)(17 121)(18 122)(19 123)(20 124)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 81)(42 82)(43 83)(44 84)(45 85)(46 86)(47 87)(48 88)(49 89)(50 90)(91 131)(92 132)(93 133)(94 134)(95 135)(96 136)(97 137)(98 138)(99 139)(100 140)(101 141)(102 142)(103 143)(104 144)(105 145)(106 146)(107 147)(108 148)(109 149)(110 150)(111 151)(112 152)(113 153)(114 154)(115 155)(116 156)(117 157)(118 158)(119 159)(120 160)
G:=sub<Sym(160)| (1,107)(2,108)(3,109)(4,110)(5,101)(6,102)(7,103)(8,104)(9,105)(10,106)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,71)(19,72)(20,73)(21,100)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,122)(32,123)(33,124)(34,125)(35,126)(36,127)(37,128)(38,129)(39,130)(40,121)(41,120)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,142)(52,143)(53,144)(54,145)(55,146)(56,147)(57,148)(58,149)(59,150)(60,141)(61,140)(62,131)(63,132)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(81,160)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,47,6,42)(2,46,7,41)(3,45,8,50)(4,44,9,49)(5,43,10,48)(11,133,16,138)(12,132,17,137)(13,131,18,136)(14,140,19,135)(15,139,20,134)(21,32,26,37)(22,31,27,36)(23,40,28,35)(24,39,29,34)(25,38,30,33)(51,82,56,87)(52,81,57,86)(53,90,58,85)(54,89,59,84)(55,88,60,83)(61,72,66,77)(62,71,67,76)(63,80,68,75)(64,79,69,74)(65,78,70,73)(91,122,96,127)(92,121,97,126)(93,130,98,125)(94,129,99,124)(95,128,100,123)(101,112,106,117)(102,111,107,116)(103,120,108,115)(104,119,109,114)(105,118,110,113)(141,152,146,157)(142,151,147,156)(143,160,148,155)(144,159,149,154)(145,158,150,153), (1,87,27,76)(2,88,28,77)(3,89,29,78)(4,90,30,79)(5,81,21,80)(6,82,22,71)(7,83,23,72)(8,84,24,73)(9,85,25,74)(10,86,26,75)(11,105,154,94)(12,106,155,95)(13,107,156,96)(14,108,157,97)(15,109,158,98)(16,110,159,99)(17,101,160,100)(18,102,151,91)(19,103,152,92)(20,104,153,93)(31,62,42,51)(32,63,43,52)(33,64,44,53)(34,65,45,54)(35,66,46,55)(36,67,47,56)(37,68,48,57)(38,69,49,58)(39,70,50,59)(40,61,41,60)(111,142,122,131)(112,143,123,132)(113,144,124,133)(114,145,125,134)(115,146,126,135)(116,147,127,136)(117,148,128,137)(118,149,129,138)(119,150,130,139)(120,141,121,140), (1,56)(2,57)(3,58)(4,59)(5,60)(6,51)(7,52)(8,53)(9,54)(10,55)(11,125)(12,126)(13,127)(14,128)(15,129)(16,130)(17,121)(18,122)(19,123)(20,124)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160)>;
G:=Group( (1,107)(2,108)(3,109)(4,110)(5,101)(6,102)(7,103)(8,104)(9,105)(10,106)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,71)(19,72)(20,73)(21,100)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,122)(32,123)(33,124)(34,125)(35,126)(36,127)(37,128)(38,129)(39,130)(40,121)(41,120)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,142)(52,143)(53,144)(54,145)(55,146)(56,147)(57,148)(58,149)(59,150)(60,141)(61,140)(62,131)(63,132)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(81,160)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,47,6,42)(2,46,7,41)(3,45,8,50)(4,44,9,49)(5,43,10,48)(11,133,16,138)(12,132,17,137)(13,131,18,136)(14,140,19,135)(15,139,20,134)(21,32,26,37)(22,31,27,36)(23,40,28,35)(24,39,29,34)(25,38,30,33)(51,82,56,87)(52,81,57,86)(53,90,58,85)(54,89,59,84)(55,88,60,83)(61,72,66,77)(62,71,67,76)(63,80,68,75)(64,79,69,74)(65,78,70,73)(91,122,96,127)(92,121,97,126)(93,130,98,125)(94,129,99,124)(95,128,100,123)(101,112,106,117)(102,111,107,116)(103,120,108,115)(104,119,109,114)(105,118,110,113)(141,152,146,157)(142,151,147,156)(143,160,148,155)(144,159,149,154)(145,158,150,153), (1,87,27,76)(2,88,28,77)(3,89,29,78)(4,90,30,79)(5,81,21,80)(6,82,22,71)(7,83,23,72)(8,84,24,73)(9,85,25,74)(10,86,26,75)(11,105,154,94)(12,106,155,95)(13,107,156,96)(14,108,157,97)(15,109,158,98)(16,110,159,99)(17,101,160,100)(18,102,151,91)(19,103,152,92)(20,104,153,93)(31,62,42,51)(32,63,43,52)(33,64,44,53)(34,65,45,54)(35,66,46,55)(36,67,47,56)(37,68,48,57)(38,69,49,58)(39,70,50,59)(40,61,41,60)(111,142,122,131)(112,143,123,132)(113,144,124,133)(114,145,125,134)(115,146,126,135)(116,147,127,136)(117,148,128,137)(118,149,129,138)(119,150,130,139)(120,141,121,140), (1,56)(2,57)(3,58)(4,59)(5,60)(6,51)(7,52)(8,53)(9,54)(10,55)(11,125)(12,126)(13,127)(14,128)(15,129)(16,130)(17,121)(18,122)(19,123)(20,124)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160) );
G=PermutationGroup([(1,107),(2,108),(3,109),(4,110),(5,101),(6,102),(7,103),(8,104),(9,105),(10,106),(11,74),(12,75),(13,76),(14,77),(15,78),(16,79),(17,80),(18,71),(19,72),(20,73),(21,100),(22,91),(23,92),(24,93),(25,94),(26,95),(27,96),(28,97),(29,98),(30,99),(31,122),(32,123),(33,124),(34,125),(35,126),(36,127),(37,128),(38,129),(39,130),(40,121),(41,120),(42,111),(43,112),(44,113),(45,114),(46,115),(47,116),(48,117),(49,118),(50,119),(51,142),(52,143),(53,144),(54,145),(55,146),(56,147),(57,148),(58,149),(59,150),(60,141),(61,140),(62,131),(63,132),(64,133),(65,134),(66,135),(67,136),(68,137),(69,138),(70,139),(81,160),(82,151),(83,152),(84,153),(85,154),(86,155),(87,156),(88,157),(89,158),(90,159)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,47,6,42),(2,46,7,41),(3,45,8,50),(4,44,9,49),(5,43,10,48),(11,133,16,138),(12,132,17,137),(13,131,18,136),(14,140,19,135),(15,139,20,134),(21,32,26,37),(22,31,27,36),(23,40,28,35),(24,39,29,34),(25,38,30,33),(51,82,56,87),(52,81,57,86),(53,90,58,85),(54,89,59,84),(55,88,60,83),(61,72,66,77),(62,71,67,76),(63,80,68,75),(64,79,69,74),(65,78,70,73),(91,122,96,127),(92,121,97,126),(93,130,98,125),(94,129,99,124),(95,128,100,123),(101,112,106,117),(102,111,107,116),(103,120,108,115),(104,119,109,114),(105,118,110,113),(141,152,146,157),(142,151,147,156),(143,160,148,155),(144,159,149,154),(145,158,150,153)], [(1,87,27,76),(2,88,28,77),(3,89,29,78),(4,90,30,79),(5,81,21,80),(6,82,22,71),(7,83,23,72),(8,84,24,73),(9,85,25,74),(10,86,26,75),(11,105,154,94),(12,106,155,95),(13,107,156,96),(14,108,157,97),(15,109,158,98),(16,110,159,99),(17,101,160,100),(18,102,151,91),(19,103,152,92),(20,104,153,93),(31,62,42,51),(32,63,43,52),(33,64,44,53),(34,65,45,54),(35,66,46,55),(36,67,47,56),(37,68,48,57),(38,69,49,58),(39,70,50,59),(40,61,41,60),(111,142,122,131),(112,143,123,132),(113,144,124,133),(114,145,125,134),(115,146,126,135),(116,147,127,136),(117,148,128,137),(118,149,129,138),(119,150,130,139),(120,141,121,140)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,51),(7,52),(8,53),(9,54),(10,55),(11,125),(12,126),(13,127),(14,128),(15,129),(16,130),(17,121),(18,122),(19,123),(20,124),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,81),(42,82),(43,83),(44,84),(45,85),(46,86),(47,87),(48,88),(49,89),(50,90),(91,131),(92,132),(93,133),(94,134),(95,135),(96,136),(97,137),(98,138),(99,139),(100,140),(101,141),(102,142),(103,143),(104,144),(105,145),(106,146),(107,147),(108,148),(109,149),(110,150),(111,151),(112,152),(113,153),(114,154),(115,155),(116,156),(117,157),(118,158),(119,159),(120,160)])
Matrix representation ►G ⊆ GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
40 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 40 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
38 | 38 | 0 | 0 | 0 | 0 |
17 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 38 | 38 | 0 | 0 |
0 | 0 | 17 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
17 | 1 | 0 | 0 | 0 | 0 |
40 | 24 | 0 | 0 | 0 | 0 |
0 | 0 | 17 | 1 | 0 | 0 |
0 | 0 | 40 | 24 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 40 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,40,0,0,0,0,1,7,0,0,0,0,0,0,0,40,0,0,0,0,1,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[38,17,0,0,0,0,38,3,0,0,0,0,0,0,38,17,0,0,0,0,38,3,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[17,40,0,0,0,0,1,24,0,0,0,0,0,0,17,40,0,0,0,0,1,24,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | 4B | 4C | ··· | 4J | 4K | 4L | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10AD | 20A | ··· | 20H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 20 | 20 | 4 | 4 | 10 | ··· | 10 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | C4○D4 | D10 | D10 | D10 | C5⋊D4 | D4×D5 | D4⋊2D5 |
kernel | C2×Dic5⋊D4 | C2×C10.D4 | C2×D10⋊C4 | Dic5⋊D4 | C2×C23.D5 | C23×Dic5 | C22×C5⋊D4 | D4×C2×C10 | C2×Dic5 | C22×C10 | C22×D4 | C2×C10 | C22×C4 | C2×D4 | C24 | C23 | C22 | C22 |
# reps | 1 | 1 | 1 | 8 | 1 | 1 | 2 | 1 | 4 | 4 | 2 | 4 | 2 | 8 | 4 | 16 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_2\times Dic_5\rtimes D_4
% in TeX
G:=Group("C2xDic5:D4");
// GroupNames label
G:=SmallGroup(320,1474);
// by ID
G=gap.SmallGroup(320,1474);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,675,297,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^10=d^4=e^2=1,c^2=b^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b^5*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations