Copied to
clipboard

?

G = C2×D4×F5order 320 = 26·5

Direct product of C2, D4 and F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D4×F5, D10.14C24, D5⋊(C4×D4), C10⋊(C4×D4), C20⋊(C22×C4), D207(C2×C4), (D4×D5)⋊10C4, D10⋊(C22×C4), C4⋊F53C22, C235(C2×F5), C41(C22×F5), (D4×C10)⋊11C4, (C2×D20)⋊14C4, Dic5⋊(C22×C4), (C23×F5)⋊2C2, (C4×F5)⋊8C22, D10.69(C2×D4), C10.9(C23×C4), D5.2(C22×D4), C22⋊F54C22, (C2×F5).3C23, C2.10(C23×F5), C221(C22×F5), (D4×D5).16C22, (C4×D5).49C23, D10.50(C4○D4), (C22×F5)⋊3C22, (C23×D5).91C22, (C22×D5).151C23, C5⋊(C2×C4×D4), (C2×C4×F5)⋊5C2, (C2×C4⋊F5)⋊4C2, (C2×C4)⋊8(C2×F5), (C2×C20)⋊4(C2×C4), (C5×D4)⋊7(C2×C4), (C4×D5)⋊6(C2×C4), C5⋊D41(C2×C4), (C2×C5⋊D4)⋊6C4, (C2×C10)⋊(C22×C4), (C2×D4×D5).17C2, D5.2(C2×C4○D4), (C2×C22⋊F5)⋊7C2, (C22×C10)⋊4(C2×C4), (C2×Dic5)⋊17(C2×C4), (C22×D5)⋊12(C2×C4), (C2×C4×D5).216C22, SmallGroup(320,1595)

Series: Derived Chief Lower central Upper central

C1C10 — C2×D4×F5
C1C5D5D10C2×F5C22×F5C23×F5 — C2×D4×F5
C5C10 — C2×D4×F5

Subgroups: 1594 in 426 conjugacy classes, 156 normal (24 characteristic)
C1, C2, C2 [×2], C2 [×12], C4 [×2], C4 [×12], C22, C22 [×4], C22 [×34], C5, C2×C4, C2×C4 [×39], D4 [×4], D4 [×12], C23 [×2], C23 [×19], D5 [×2], D5 [×2], D5 [×4], C10, C10 [×2], C10 [×4], C42 [×4], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4 [×21], C2×D4, C2×D4 [×11], C24 [×2], Dic5 [×2], C20 [×2], F5 [×4], F5 [×6], D10 [×2], D10 [×8], D10 [×20], C2×C10, C2×C10 [×4], C2×C10 [×4], C2×C42, C2×C22⋊C4 [×2], C2×C4⋊C4, C4×D4 [×8], C23×C4 [×2], C22×D4, C4×D5 [×4], D20 [×4], C2×Dic5, C5⋊D4 [×8], C2×C20, C5×D4 [×4], C2×F5 [×12], C2×F5 [×22], C22×D5, C22×D5 [×10], C22×D5 [×8], C22×C10 [×2], C2×C4×D4, C4×F5 [×4], C4⋊F5 [×4], C22⋊F5 [×8], C2×C4×D5, C2×D20, D4×D5 [×8], C2×C5⋊D4 [×2], D4×C10, C22×F5 [×2], C22×F5 [×10], C22×F5 [×8], C23×D5 [×2], C2×C4×F5, C2×C4⋊F5, D4×F5 [×8], C2×C22⋊F5 [×2], C2×D4×D5, C23×F5 [×2], C2×D4×F5

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×4], C23 [×15], C22×C4 [×14], C2×D4 [×6], C4○D4 [×2], C24, F5, C4×D4 [×4], C23×C4, C22×D4, C2×C4○D4, C2×F5 [×7], C2×C4×D4, C22×F5 [×7], D4×F5 [×2], C23×F5, C2×D4×F5

Generators and relations
 G = < a,b,c,d,e | a2=b4=c2=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >

Smallest permutation representation
On 40 points
Generators in S40
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)
(1 36 6 31)(2 37 7 32)(3 38 8 33)(4 39 9 34)(5 40 10 35)(11 21 16 26)(12 22 17 27)(13 23 18 28)(14 24 19 29)(15 25 20 30)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 26)(2 28 5 29)(3 30 4 27)(6 21)(7 23 10 24)(8 25 9 22)(11 36)(12 38 15 39)(13 40 14 37)(16 31)(17 33 20 34)(18 35 19 32)

G:=sub<Sym(40)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,36,6,31)(2,37,7,32)(3,38,8,33)(4,39,9,34)(5,40,10,35)(11,21,16,26)(12,22,17,27)(13,23,18,28)(14,24,19,29)(15,25,20,30), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,26)(2,28,5,29)(3,30,4,27)(6,21)(7,23,10,24)(8,25,9,22)(11,36)(12,38,15,39)(13,40,14,37)(16,31)(17,33,20,34)(18,35,19,32)>;

G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,36,6,31)(2,37,7,32)(3,38,8,33)(4,39,9,34)(5,40,10,35)(11,21,16,26)(12,22,17,27)(13,23,18,28)(14,24,19,29)(15,25,20,30), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,26)(2,28,5,29)(3,30,4,27)(6,21)(7,23,10,24)(8,25,9,22)(11,36)(12,38,15,39)(13,40,14,37)(16,31)(17,33,20,34)(18,35,19,32) );

G=PermutationGroup([(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40)], [(1,36,6,31),(2,37,7,32),(3,38,8,33),(4,39,9,34),(5,40,10,35),(11,21,16,26),(12,22,17,27),(13,23,18,28),(14,24,19,29),(15,25,20,30)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,26),(2,28,5,29),(3,30,4,27),(6,21),(7,23,10,24),(8,25,9,22),(11,36),(12,38,15,39),(13,40,14,37),(16,31),(17,33,20,34),(18,35,19,32)])

Matrix representation G ⊆ GL8(ℤ)

-10000000
0-1000000
00100000
00010000
00001000
00000100
00000010
00000001
,
12000000
-1-1000000
00-1-20000
00110000
0000-1000
00000-100
000000-10
0000000-1
,
12000000
0-1000000
00-1-20000
00010000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
0000-1-1-1-1
00001000
00000100
00000010
,
10000000
01000000
00-100000
000-10000
00001000
00000001
00000100
0000-1-1-1-1

G:=sub<GL(8,Integers())| [-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,-1,0,0,0,0,0,0,2,-1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-2,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,2,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-2,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,-1,0,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,-1] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O4A4B4C···4J4K···4X 5 10A10B10C10D10E10F10G20A20B
order1222222222222222444···44···45101010101010102020
size11112222555510101010225···510···104444888888

50 irreducible representations

dim111111111112244448
type+++++++++++++
imageC1C2C2C2C2C2C2C4C4C4C4D4C4○D4F5C2×F5C2×F5C2×F5D4×F5
kernelC2×D4×F5C2×C4×F5C2×C4⋊F5D4×F5C2×C22⋊F5C2×D4×D5C23×F5C2×D20D4×D5C2×C5⋊D4D4×C10C2×F5D10C2×D4C2×C4D4C23C2
# reps111821228424411422

In GAP, Magma, Sage, TeX

C_2\times D_4\times F_5
% in TeX

G:=Group("C2xD4xF5");
// GroupNames label

G:=SmallGroup(320,1595);
// by ID

G=gap.SmallGroup(320,1595);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,297,6278,818]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽