Copied to
clipboard

?

G = C2×D5⋊C16order 320 = 26·5

Direct product of C2 and D5⋊C16

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×D5⋊C16, D103C16, D5⋊(C2×C16), C101(C2×C16), C5⋊C164C22, C51(C22×C16), (C4×D5).7C8, (C2×C8).24F5, C8.41(C2×F5), C40.38(C2×C4), C20.23(C2×C8), (C2×C40).22C4, (C8×D5).10C4, C4.18(D5⋊C8), D10.16(C2×C8), C10.8(C22×C8), (C22×D5).7C8, C4.45(C22×F5), C20.85(C22×C4), C52C8.35C23, Dic5.16(C2×C8), (C2×Dic5).12C8, (C8×D5).61C22, C22.12(D5⋊C8), (C2×C5⋊C16)⋊9C2, C2.2(C2×D5⋊C8), (C2×C4×D5).45C4, (D5×C2×C8).29C2, (C2×C10).10(C2×C8), C52C8.51(C2×C4), (C4×D5).91(C2×C4), (C2×C4).163(C2×F5), (C2×C20).172(C2×C4), (C2×C52C8).348C22, SmallGroup(320,1051)

Series: Derived Chief Lower central Upper central

C1C5 — C2×D5⋊C16
C1C5C10C20C52C8C5⋊C16C2×C5⋊C16 — C2×D5⋊C16
C5 — C2×D5⋊C16

Subgroups: 250 in 98 conjugacy classes, 60 normal (22 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×2], C4 [×2], C22, C22 [×6], C5, C8 [×2], C8 [×2], C2×C4, C2×C4 [×5], C23, D5 [×4], C10, C10 [×2], C16 [×4], C2×C8, C2×C8 [×5], C22×C4, Dic5 [×2], C20 [×2], D10 [×6], C2×C10, C2×C16 [×6], C22×C8, C52C8 [×2], C40 [×2], C4×D5 [×4], C2×Dic5, C2×C20, C22×D5, C22×C16, C5⋊C16 [×4], C8×D5 [×4], C2×C52C8, C2×C40, C2×C4×D5, D5⋊C16 [×4], C2×C5⋊C16 [×2], D5×C2×C8, C2×D5⋊C16

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C8 [×4], C2×C4 [×6], C23, C16 [×4], C2×C8 [×6], C22×C4, F5, C2×C16 [×6], C22×C8, C2×F5 [×3], C22×C16, D5⋊C8 [×2], C22×F5, D5⋊C16 [×2], C2×D5⋊C8, C2×D5⋊C16

Generators and relations
 G = < a,b,c,d | a2=b5=c2=d16=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b3, dcd-1=b2c >

Smallest permutation representation
On 160 points
Generators in S160
(1 91)(2 92)(3 93)(4 94)(5 95)(6 96)(7 81)(8 82)(9 83)(10 84)(11 85)(12 86)(13 87)(14 88)(15 89)(16 90)(17 109)(18 110)(19 111)(20 112)(21 97)(22 98)(23 99)(24 100)(25 101)(26 102)(27 103)(28 104)(29 105)(30 106)(31 107)(32 108)(33 147)(34 148)(35 149)(36 150)(37 151)(38 152)(39 153)(40 154)(41 155)(42 156)(43 157)(44 158)(45 159)(46 160)(47 145)(48 146)(49 65)(50 66)(51 67)(52 68)(53 69)(54 70)(55 71)(56 72)(57 73)(58 74)(59 75)(60 76)(61 77)(62 78)(63 79)(64 80)(113 138)(114 139)(115 140)(116 141)(117 142)(118 143)(119 144)(120 129)(121 130)(122 131)(123 132)(124 133)(125 134)(126 135)(127 136)(128 137)
(1 69 34 121 101)(2 122 70 102 35)(3 103 123 36 71)(4 37 104 72 124)(5 73 38 125 105)(6 126 74 106 39)(7 107 127 40 75)(8 41 108 76 128)(9 77 42 113 109)(10 114 78 110 43)(11 111 115 44 79)(12 45 112 80 116)(13 65 46 117 97)(14 118 66 98 47)(15 99 119 48 67)(16 33 100 68 120)(17 83 61 156 138)(18 157 84 139 62)(19 140 158 63 85)(20 64 141 86 159)(21 87 49 160 142)(22 145 88 143 50)(23 144 146 51 89)(24 52 129 90 147)(25 91 53 148 130)(26 149 92 131 54)(27 132 150 55 93)(28 56 133 94 151)(29 95 57 152 134)(30 153 96 135 58)(31 136 154 59 81)(32 60 137 82 155)
(1 101)(2 35)(3 71)(4 124)(5 105)(6 39)(7 75)(8 128)(9 109)(10 43)(11 79)(12 116)(13 97)(14 47)(15 67)(16 120)(17 83)(18 139)(19 158)(21 87)(22 143)(23 146)(25 91)(26 131)(27 150)(29 95)(30 135)(31 154)(33 68)(36 103)(37 72)(40 107)(41 76)(44 111)(45 80)(48 99)(49 142)(51 89)(52 147)(53 130)(55 93)(56 151)(57 134)(59 81)(60 155)(61 138)(63 85)(64 159)(65 117)(69 121)(73 125)(77 113)(82 137)(84 157)(86 141)(88 145)(90 129)(92 149)(94 133)(96 153)(98 118)(102 122)(106 126)(110 114)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,81)(8,82)(9,83)(10,84)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,109)(18,110)(19,111)(20,112)(21,97)(22,98)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,105)(30,106)(31,107)(32,108)(33,147)(34,148)(35,149)(36,150)(37,151)(38,152)(39,153)(40,154)(41,155)(42,156)(43,157)(44,158)(45,159)(46,160)(47,145)(48,146)(49,65)(50,66)(51,67)(52,68)(53,69)(54,70)(55,71)(56,72)(57,73)(58,74)(59,75)(60,76)(61,77)(62,78)(63,79)(64,80)(113,138)(114,139)(115,140)(116,141)(117,142)(118,143)(119,144)(120,129)(121,130)(122,131)(123,132)(124,133)(125,134)(126,135)(127,136)(128,137), (1,69,34,121,101)(2,122,70,102,35)(3,103,123,36,71)(4,37,104,72,124)(5,73,38,125,105)(6,126,74,106,39)(7,107,127,40,75)(8,41,108,76,128)(9,77,42,113,109)(10,114,78,110,43)(11,111,115,44,79)(12,45,112,80,116)(13,65,46,117,97)(14,118,66,98,47)(15,99,119,48,67)(16,33,100,68,120)(17,83,61,156,138)(18,157,84,139,62)(19,140,158,63,85)(20,64,141,86,159)(21,87,49,160,142)(22,145,88,143,50)(23,144,146,51,89)(24,52,129,90,147)(25,91,53,148,130)(26,149,92,131,54)(27,132,150,55,93)(28,56,133,94,151)(29,95,57,152,134)(30,153,96,135,58)(31,136,154,59,81)(32,60,137,82,155), (1,101)(2,35)(3,71)(4,124)(5,105)(6,39)(7,75)(8,128)(9,109)(10,43)(11,79)(12,116)(13,97)(14,47)(15,67)(16,120)(17,83)(18,139)(19,158)(21,87)(22,143)(23,146)(25,91)(26,131)(27,150)(29,95)(30,135)(31,154)(33,68)(36,103)(37,72)(40,107)(41,76)(44,111)(45,80)(48,99)(49,142)(51,89)(52,147)(53,130)(55,93)(56,151)(57,134)(59,81)(60,155)(61,138)(63,85)(64,159)(65,117)(69,121)(73,125)(77,113)(82,137)(84,157)(86,141)(88,145)(90,129)(92,149)(94,133)(96,153)(98,118)(102,122)(106,126)(110,114), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;

G:=Group( (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,81)(8,82)(9,83)(10,84)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,109)(18,110)(19,111)(20,112)(21,97)(22,98)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,105)(30,106)(31,107)(32,108)(33,147)(34,148)(35,149)(36,150)(37,151)(38,152)(39,153)(40,154)(41,155)(42,156)(43,157)(44,158)(45,159)(46,160)(47,145)(48,146)(49,65)(50,66)(51,67)(52,68)(53,69)(54,70)(55,71)(56,72)(57,73)(58,74)(59,75)(60,76)(61,77)(62,78)(63,79)(64,80)(113,138)(114,139)(115,140)(116,141)(117,142)(118,143)(119,144)(120,129)(121,130)(122,131)(123,132)(124,133)(125,134)(126,135)(127,136)(128,137), (1,69,34,121,101)(2,122,70,102,35)(3,103,123,36,71)(4,37,104,72,124)(5,73,38,125,105)(6,126,74,106,39)(7,107,127,40,75)(8,41,108,76,128)(9,77,42,113,109)(10,114,78,110,43)(11,111,115,44,79)(12,45,112,80,116)(13,65,46,117,97)(14,118,66,98,47)(15,99,119,48,67)(16,33,100,68,120)(17,83,61,156,138)(18,157,84,139,62)(19,140,158,63,85)(20,64,141,86,159)(21,87,49,160,142)(22,145,88,143,50)(23,144,146,51,89)(24,52,129,90,147)(25,91,53,148,130)(26,149,92,131,54)(27,132,150,55,93)(28,56,133,94,151)(29,95,57,152,134)(30,153,96,135,58)(31,136,154,59,81)(32,60,137,82,155), (1,101)(2,35)(3,71)(4,124)(5,105)(6,39)(7,75)(8,128)(9,109)(10,43)(11,79)(12,116)(13,97)(14,47)(15,67)(16,120)(17,83)(18,139)(19,158)(21,87)(22,143)(23,146)(25,91)(26,131)(27,150)(29,95)(30,135)(31,154)(33,68)(36,103)(37,72)(40,107)(41,76)(44,111)(45,80)(48,99)(49,142)(51,89)(52,147)(53,130)(55,93)(56,151)(57,134)(59,81)(60,155)(61,138)(63,85)(64,159)(65,117)(69,121)(73,125)(77,113)(82,137)(84,157)(86,141)(88,145)(90,129)(92,149)(94,133)(96,153)(98,118)(102,122)(106,126)(110,114), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );

G=PermutationGroup([(1,91),(2,92),(3,93),(4,94),(5,95),(6,96),(7,81),(8,82),(9,83),(10,84),(11,85),(12,86),(13,87),(14,88),(15,89),(16,90),(17,109),(18,110),(19,111),(20,112),(21,97),(22,98),(23,99),(24,100),(25,101),(26,102),(27,103),(28,104),(29,105),(30,106),(31,107),(32,108),(33,147),(34,148),(35,149),(36,150),(37,151),(38,152),(39,153),(40,154),(41,155),(42,156),(43,157),(44,158),(45,159),(46,160),(47,145),(48,146),(49,65),(50,66),(51,67),(52,68),(53,69),(54,70),(55,71),(56,72),(57,73),(58,74),(59,75),(60,76),(61,77),(62,78),(63,79),(64,80),(113,138),(114,139),(115,140),(116,141),(117,142),(118,143),(119,144),(120,129),(121,130),(122,131),(123,132),(124,133),(125,134),(126,135),(127,136),(128,137)], [(1,69,34,121,101),(2,122,70,102,35),(3,103,123,36,71),(4,37,104,72,124),(5,73,38,125,105),(6,126,74,106,39),(7,107,127,40,75),(8,41,108,76,128),(9,77,42,113,109),(10,114,78,110,43),(11,111,115,44,79),(12,45,112,80,116),(13,65,46,117,97),(14,118,66,98,47),(15,99,119,48,67),(16,33,100,68,120),(17,83,61,156,138),(18,157,84,139,62),(19,140,158,63,85),(20,64,141,86,159),(21,87,49,160,142),(22,145,88,143,50),(23,144,146,51,89),(24,52,129,90,147),(25,91,53,148,130),(26,149,92,131,54),(27,132,150,55,93),(28,56,133,94,151),(29,95,57,152,134),(30,153,96,135,58),(31,136,154,59,81),(32,60,137,82,155)], [(1,101),(2,35),(3,71),(4,124),(5,105),(6,39),(7,75),(8,128),(9,109),(10,43),(11,79),(12,116),(13,97),(14,47),(15,67),(16,120),(17,83),(18,139),(19,158),(21,87),(22,143),(23,146),(25,91),(26,131),(27,150),(29,95),(30,135),(31,154),(33,68),(36,103),(37,72),(40,107),(41,76),(44,111),(45,80),(48,99),(49,142),(51,89),(52,147),(53,130),(55,93),(56,151),(57,134),(59,81),(60,155),(61,138),(63,85),(64,159),(65,117),(69,121),(73,125),(77,113),(82,137),(84,157),(86,141),(88,145),(90,129),(92,149),(94,133),(96,153),(98,118),(102,122),(106,126),(110,114)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)])

Matrix representation G ⊆ GL5(𝔽241)

2400000
0240000
0024000
0002400
0000240
,
10000
0240240240240
01000
00100
00010
,
2400000
0240240240240
00001
00010
00100
,
2400000
015407676
076760154
0165781650
08716316387

G:=sub<GL(5,GF(241))| [240,0,0,0,0,0,240,0,0,0,0,0,240,0,0,0,0,0,240,0,0,0,0,0,240],[1,0,0,0,0,0,240,1,0,0,0,240,0,1,0,0,240,0,0,1,0,240,0,0,0],[240,0,0,0,0,0,240,0,0,0,0,240,0,0,1,0,240,0,1,0,0,240,1,0,0],[240,0,0,0,0,0,154,76,165,87,0,0,76,78,163,0,76,0,165,163,0,76,154,0,87] >;

80 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H 5 8A···8H8I···8P10A10B10C16A···16AF20A20B20C20D40A···40H
order122222224444444458···88···810101016···162020202040···40
size111155551111555541···15···54445···544444···4

80 irreducible representations

dim11111111111444444
type+++++++
imageC1C2C2C2C4C4C4C8C8C8C16F5C2×F5C2×F5D5⋊C8D5⋊C8D5⋊C16
kernelC2×D5⋊C16D5⋊C16C2×C5⋊C16D5×C2×C8C8×D5C2×C40C2×C4×D5C4×D5C2×Dic5C22×D5D10C2×C8C8C2×C4C4C22C2
# reps142142284432121228

In GAP, Magma, Sage, TeX

C_2\times D_5\rtimes C_{16}
% in TeX

G:=Group("C2xD5:C16");
// GroupNames label

G:=SmallGroup(320,1051);
// by ID

G=gap.SmallGroup(320,1051);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,100,80,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^5=c^2=d^16=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^3,d*c*d^-1=b^2*c>;
// generators/relations

׿
×
𝔽