Copied to
clipboard

?

G = C2×C8.F5order 320 = 26·5

Direct product of C2 and C8.F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C8.F5, C101M5(2), C5⋊C161C22, (C4×D5).8C8, C51(C2×M5(2)), (C2×C8).19F5, C8.32(C2×F5), (C2×C40).23C4, C40.39(C2×C4), C20.24(C2×C8), (C8×D5).11C4, C4.19(D5⋊C8), D10.17(C2×C8), C10.9(C22×C8), (C22×D5).8C8, C4.46(C22×F5), C20.86(C22×C4), C52C8.36C23, Dic5.17(C2×C8), (C2×Dic5).13C8, (C8×D5).62C22, C22.13(D5⋊C8), (C2×C5⋊C16)⋊7C2, (D5×C2×C8).30C2, (C2×C4×D5).46C4, C2.10(C2×D5⋊C8), (C2×C10).11(C2×C8), C52C8.52(C2×C4), (C4×D5).92(C2×C4), (C2×C4).164(C2×F5), (C2×C20).173(C2×C4), (C2×C52C8).349C22, SmallGroup(320,1052)

Series: Derived Chief Lower central Upper central

C1C10 — C2×C8.F5
C1C5C10C20C52C8C5⋊C16C2×C5⋊C16 — C2×C8.F5
C5C10 — C2×C8.F5

Subgroups: 250 in 90 conjugacy classes, 52 normal (22 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×2], C4 [×2], C22, C22 [×4], C5, C8 [×2], C8 [×2], C2×C4, C2×C4 [×5], C23, D5 [×2], C10, C10 [×2], C16 [×4], C2×C8, C2×C8 [×5], C22×C4, Dic5 [×2], C20 [×2], D10 [×2], D10 [×2], C2×C10, C2×C16 [×2], M5(2) [×4], C22×C8, C52C8 [×2], C40 [×2], C4×D5 [×4], C2×Dic5, C2×C20, C22×D5, C2×M5(2), C5⋊C16 [×4], C8×D5 [×4], C2×C52C8, C2×C40, C2×C4×D5, C8.F5 [×4], C2×C5⋊C16 [×2], D5×C2×C8, C2×C8.F5

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C8 [×4], C2×C4 [×6], C23, C2×C8 [×6], C22×C4, F5, M5(2) [×2], C22×C8, C2×F5 [×3], C2×M5(2), D5⋊C8 [×2], C22×F5, C8.F5 [×2], C2×D5⋊C8, C2×C8.F5

Generators and relations
 G = < a,b,c,d | a2=b8=c5=1, d4=b2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b5, dcd-1=c3 >

Smallest permutation representation
On 160 points
Generators in S160
(1 112)(2 97)(3 98)(4 99)(5 100)(6 101)(7 102)(8 103)(9 104)(10 105)(11 106)(12 107)(13 108)(14 109)(15 110)(16 111)(17 139)(18 140)(19 141)(20 142)(21 143)(22 144)(23 129)(24 130)(25 131)(26 132)(27 133)(28 134)(29 135)(30 136)(31 137)(32 138)(33 83)(34 84)(35 85)(36 86)(37 87)(38 88)(39 89)(40 90)(41 91)(42 92)(43 93)(44 94)(45 95)(46 96)(47 81)(48 82)(49 74)(50 75)(51 76)(52 77)(53 78)(54 79)(55 80)(56 65)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)(64 73)(113 150)(114 151)(115 152)(116 153)(117 154)(118 155)(119 156)(120 157)(121 158)(122 159)(123 160)(124 145)(125 146)(126 147)(127 148)(128 149)
(1 106 5 110 9 98 13 102)(2 99 6 103 10 107 14 111)(3 108 7 112 11 100 15 104)(4 101 8 105 12 109 16 97)(17 159 21 147 25 151 29 155)(18 152 22 156 26 160 30 148)(19 145 23 149 27 153 31 157)(20 154 24 158 28 146 32 150)(33 72 37 76 41 80 45 68)(34 65 38 69 42 73 46 77)(35 74 39 78 43 66 47 70)(36 67 40 71 44 75 48 79)(49 89 53 93 57 81 61 85)(50 82 54 86 58 90 62 94)(51 91 55 95 59 83 63 87)(52 84 56 88 60 92 64 96)(113 142 117 130 121 134 125 138)(114 135 118 139 122 143 126 131)(115 144 119 132 123 136 127 140)(116 137 120 141 124 129 128 133)
(1 137 61 41 147)(2 42 138 148 62)(3 149 43 63 139)(4 64 150 140 44)(5 141 49 45 151)(6 46 142 152 50)(7 153 47 51 143)(8 52 154 144 48)(9 129 53 33 155)(10 34 130 156 54)(11 157 35 55 131)(12 56 158 132 36)(13 133 57 37 159)(14 38 134 160 58)(15 145 39 59 135)(16 60 146 136 40)(17 98 128 93 72)(18 94 99 73 113)(19 74 95 114 100)(20 115 75 101 96)(21 102 116 81 76)(22 82 103 77 117)(23 78 83 118 104)(24 119 79 105 84)(25 106 120 85 80)(26 86 107 65 121)(27 66 87 122 108)(28 123 67 109 88)(29 110 124 89 68)(30 90 111 69 125)(31 70 91 126 112)(32 127 71 97 92)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,112)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,139)(18,140)(19,141)(20,142)(21,143)(22,144)(23,129)(24,130)(25,131)(26,132)(27,133)(28,134)(29,135)(30,136)(31,137)(32,138)(33,83)(34,84)(35,85)(36,86)(37,87)(38,88)(39,89)(40,90)(41,91)(42,92)(43,93)(44,94)(45,95)(46,96)(47,81)(48,82)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72)(64,73)(113,150)(114,151)(115,152)(116,153)(117,154)(118,155)(119,156)(120,157)(121,158)(122,159)(123,160)(124,145)(125,146)(126,147)(127,148)(128,149), (1,106,5,110,9,98,13,102)(2,99,6,103,10,107,14,111)(3,108,7,112,11,100,15,104)(4,101,8,105,12,109,16,97)(17,159,21,147,25,151,29,155)(18,152,22,156,26,160,30,148)(19,145,23,149,27,153,31,157)(20,154,24,158,28,146,32,150)(33,72,37,76,41,80,45,68)(34,65,38,69,42,73,46,77)(35,74,39,78,43,66,47,70)(36,67,40,71,44,75,48,79)(49,89,53,93,57,81,61,85)(50,82,54,86,58,90,62,94)(51,91,55,95,59,83,63,87)(52,84,56,88,60,92,64,96)(113,142,117,130,121,134,125,138)(114,135,118,139,122,143,126,131)(115,144,119,132,123,136,127,140)(116,137,120,141,124,129,128,133), (1,137,61,41,147)(2,42,138,148,62)(3,149,43,63,139)(4,64,150,140,44)(5,141,49,45,151)(6,46,142,152,50)(7,153,47,51,143)(8,52,154,144,48)(9,129,53,33,155)(10,34,130,156,54)(11,157,35,55,131)(12,56,158,132,36)(13,133,57,37,159)(14,38,134,160,58)(15,145,39,59,135)(16,60,146,136,40)(17,98,128,93,72)(18,94,99,73,113)(19,74,95,114,100)(20,115,75,101,96)(21,102,116,81,76)(22,82,103,77,117)(23,78,83,118,104)(24,119,79,105,84)(25,106,120,85,80)(26,86,107,65,121)(27,66,87,122,108)(28,123,67,109,88)(29,110,124,89,68)(30,90,111,69,125)(31,70,91,126,112)(32,127,71,97,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;

G:=Group( (1,112)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,139)(18,140)(19,141)(20,142)(21,143)(22,144)(23,129)(24,130)(25,131)(26,132)(27,133)(28,134)(29,135)(30,136)(31,137)(32,138)(33,83)(34,84)(35,85)(36,86)(37,87)(38,88)(39,89)(40,90)(41,91)(42,92)(43,93)(44,94)(45,95)(46,96)(47,81)(48,82)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72)(64,73)(113,150)(114,151)(115,152)(116,153)(117,154)(118,155)(119,156)(120,157)(121,158)(122,159)(123,160)(124,145)(125,146)(126,147)(127,148)(128,149), (1,106,5,110,9,98,13,102)(2,99,6,103,10,107,14,111)(3,108,7,112,11,100,15,104)(4,101,8,105,12,109,16,97)(17,159,21,147,25,151,29,155)(18,152,22,156,26,160,30,148)(19,145,23,149,27,153,31,157)(20,154,24,158,28,146,32,150)(33,72,37,76,41,80,45,68)(34,65,38,69,42,73,46,77)(35,74,39,78,43,66,47,70)(36,67,40,71,44,75,48,79)(49,89,53,93,57,81,61,85)(50,82,54,86,58,90,62,94)(51,91,55,95,59,83,63,87)(52,84,56,88,60,92,64,96)(113,142,117,130,121,134,125,138)(114,135,118,139,122,143,126,131)(115,144,119,132,123,136,127,140)(116,137,120,141,124,129,128,133), (1,137,61,41,147)(2,42,138,148,62)(3,149,43,63,139)(4,64,150,140,44)(5,141,49,45,151)(6,46,142,152,50)(7,153,47,51,143)(8,52,154,144,48)(9,129,53,33,155)(10,34,130,156,54)(11,157,35,55,131)(12,56,158,132,36)(13,133,57,37,159)(14,38,134,160,58)(15,145,39,59,135)(16,60,146,136,40)(17,98,128,93,72)(18,94,99,73,113)(19,74,95,114,100)(20,115,75,101,96)(21,102,116,81,76)(22,82,103,77,117)(23,78,83,118,104)(24,119,79,105,84)(25,106,120,85,80)(26,86,107,65,121)(27,66,87,122,108)(28,123,67,109,88)(29,110,124,89,68)(30,90,111,69,125)(31,70,91,126,112)(32,127,71,97,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );

G=PermutationGroup([(1,112),(2,97),(3,98),(4,99),(5,100),(6,101),(7,102),(8,103),(9,104),(10,105),(11,106),(12,107),(13,108),(14,109),(15,110),(16,111),(17,139),(18,140),(19,141),(20,142),(21,143),(22,144),(23,129),(24,130),(25,131),(26,132),(27,133),(28,134),(29,135),(30,136),(31,137),(32,138),(33,83),(34,84),(35,85),(36,86),(37,87),(38,88),(39,89),(40,90),(41,91),(42,92),(43,93),(44,94),(45,95),(46,96),(47,81),(48,82),(49,74),(50,75),(51,76),(52,77),(53,78),(54,79),(55,80),(56,65),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72),(64,73),(113,150),(114,151),(115,152),(116,153),(117,154),(118,155),(119,156),(120,157),(121,158),(122,159),(123,160),(124,145),(125,146),(126,147),(127,148),(128,149)], [(1,106,5,110,9,98,13,102),(2,99,6,103,10,107,14,111),(3,108,7,112,11,100,15,104),(4,101,8,105,12,109,16,97),(17,159,21,147,25,151,29,155),(18,152,22,156,26,160,30,148),(19,145,23,149,27,153,31,157),(20,154,24,158,28,146,32,150),(33,72,37,76,41,80,45,68),(34,65,38,69,42,73,46,77),(35,74,39,78,43,66,47,70),(36,67,40,71,44,75,48,79),(49,89,53,93,57,81,61,85),(50,82,54,86,58,90,62,94),(51,91,55,95,59,83,63,87),(52,84,56,88,60,92,64,96),(113,142,117,130,121,134,125,138),(114,135,118,139,122,143,126,131),(115,144,119,132,123,136,127,140),(116,137,120,141,124,129,128,133)], [(1,137,61,41,147),(2,42,138,148,62),(3,149,43,63,139),(4,64,150,140,44),(5,141,49,45,151),(6,46,142,152,50),(7,153,47,51,143),(8,52,154,144,48),(9,129,53,33,155),(10,34,130,156,54),(11,157,35,55,131),(12,56,158,132,36),(13,133,57,37,159),(14,38,134,160,58),(15,145,39,59,135),(16,60,146,136,40),(17,98,128,93,72),(18,94,99,73,113),(19,74,95,114,100),(20,115,75,101,96),(21,102,116,81,76),(22,82,103,77,117),(23,78,83,118,104),(24,119,79,105,84),(25,106,120,85,80),(26,86,107,65,121),(27,66,87,122,108),(28,123,67,109,88),(29,110,124,89,68),(30,90,111,69,125),(31,70,91,126,112),(32,127,71,97,92)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)])

Matrix representation G ⊆ GL6(𝔽241)

100000
010000
00240000
00024000
00002400
00000240
,
23300000
6380000
00240000
00024000
00002400
00000240
,
100000
010000
00240100
00240010
00240001
00240000
,
1910000
1292220000
001736830
00176680173
00173068176
000368173

G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[233,63,0,0,0,0,0,8,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,240,240,240,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[19,129,0,0,0,0,1,222,0,0,0,0,0,0,173,176,173,0,0,0,68,68,0,3,0,0,3,0,68,68,0,0,0,173,176,173] >;

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F 5 8A8B8C8D8E···8L10A10B10C16A···16P20A20B20C20D40A···40H
order122222444444588888···810101016···162020202040···40
size1111101011111010422225···544410···1044444···4

56 irreducible representations

dim11111111112444444
type+++++++
imageC1C2C2C2C4C4C4C8C8C8M5(2)F5C2×F5C2×F5D5⋊C8D5⋊C8C8.F5
kernelC2×C8.F5C8.F5C2×C5⋊C16D5×C2×C8C8×D5C2×C40C2×C4×D5C4×D5C2×Dic5C22×D5C10C2×C8C8C2×C4C4C22C2
# reps14214228448121228

In GAP, Magma, Sage, TeX

C_2\times C_8.F_5
% in TeX

G:=Group("C2xC8.F5");
// GroupNames label

G:=SmallGroup(320,1052);
// by ID

G=gap.SmallGroup(320,1052);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,758,100,80,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^5=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^5,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽