direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×Q8.10D10, C20.45C24, C10.10C25, D10.5C24, D20.36C23, C10⋊12- (1+4), Dic5.5C24, Dic10.36C23, (C2×Q8)⋊35D10, (Q8×D5)⋊13C22, (C22×Q8)⋊10D5, C4.45(C23×D5), C2.11(D5×C24), C5⋊D4.6C23, C5⋊1(C2×2- (1+4)), C4○D20⋊23C22, (Q8×C10)⋊44C22, (C4×D5).18C23, Q8.29(C22×D5), (C5×Q8).29C23, C22.9(C23×D5), (C2×C10).330C24, (C2×C20).566C23, Q8⋊2D5⋊12C22, (C22×C4).291D10, (C2×D20).291C22, C23.242(C22×D5), (C22×C20).302C22, (C22×C10).437C23, (C2×Dic5).308C23, (C22×D5).258C23, (C2×Dic10).320C22, (C2×Q8×D5)⋊20C2, (Q8×C2×C10)⋊11C2, (C2×C4○D20)⋊35C2, (C2×Q8⋊2D5)⋊20C2, (C2×C4×D5).181C22, (C2×C4).252(C22×D5), (C2×C5⋊D4).162C22, SmallGroup(320,1617)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 2190 in 794 conjugacy classes, 447 normal (11 characteristic)
C1, C2, C2 [×2], C2 [×10], C4 [×12], C4 [×8], C22, C22 [×2], C22 [×18], C5, C2×C4 [×18], C2×C4 [×52], D4 [×40], Q8 [×16], Q8 [×24], C23, C23 [×4], D5 [×8], C10, C10 [×2], C10 [×2], C22×C4 [×3], C22×C4 [×12], C2×D4 [×10], C2×Q8 [×12], C2×Q8 [×38], C4○D4 [×80], Dic5 [×8], C20 [×12], D10 [×8], D10 [×8], C2×C10, C2×C10 [×2], C2×C10 [×2], C22×Q8, C22×Q8 [×4], C2×C4○D4 [×10], 2- (1+4) [×16], Dic10 [×24], C4×D5 [×48], D20 [×24], C2×Dic5 [×4], C5⋊D4 [×16], C2×C20 [×18], C5×Q8 [×16], C22×D5 [×4], C22×C10, C2×2- (1+4), C2×Dic10 [×6], C2×C4×D5 [×12], C2×D20 [×6], C4○D20 [×48], Q8×D5 [×32], Q8⋊2D5 [×32], C2×C5⋊D4 [×4], C22×C20 [×3], Q8×C10 [×12], C2×C4○D20 [×6], C2×Q8×D5 [×4], C2×Q8⋊2D5 [×4], Q8.10D10 [×16], Q8×C2×C10, C2×Q8.10D10
Quotients:
C1, C2 [×31], C22 [×155], C23 [×155], D5, C24 [×31], D10 [×15], 2- (1+4) [×2], C25, C22×D5 [×35], C2×2- (1+4), C23×D5 [×15], Q8.10D10 [×2], D5×C24, C2×Q8.10D10
Generators and relations
G = < a,b,c,d,e | a2=b4=1, c2=d10=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe-1=b-1, bd=db, dcd-1=ece-1=b2c, ede-1=d9 >
(1 85)(2 86)(3 87)(4 88)(5 89)(6 90)(7 91)(8 92)(9 93)(10 94)(11 95)(12 96)(13 97)(14 98)(15 99)(16 100)(17 81)(18 82)(19 83)(20 84)(21 67)(22 68)(23 69)(24 70)(25 71)(26 72)(27 73)(28 74)(29 75)(30 76)(31 77)(32 78)(33 79)(34 80)(35 61)(36 62)(37 63)(38 64)(39 65)(40 66)(41 159)(42 160)(43 141)(44 142)(45 143)(46 144)(47 145)(48 146)(49 147)(50 148)(51 149)(52 150)(53 151)(54 152)(55 153)(56 154)(57 155)(58 156)(59 157)(60 158)(101 124)(102 125)(103 126)(104 127)(105 128)(106 129)(107 130)(108 131)(109 132)(110 133)(111 134)(112 135)(113 136)(114 137)(115 138)(116 139)(117 140)(118 121)(119 122)(120 123)
(1 36 11 26)(2 37 12 27)(3 38 13 28)(4 39 14 29)(5 40 15 30)(6 21 16 31)(7 22 17 32)(8 23 18 33)(9 24 19 34)(10 25 20 35)(41 110 51 120)(42 111 52 101)(43 112 53 102)(44 113 54 103)(45 114 55 104)(46 115 56 105)(47 116 57 106)(48 117 58 107)(49 118 59 108)(50 119 60 109)(61 94 71 84)(62 95 72 85)(63 96 73 86)(64 97 74 87)(65 98 75 88)(66 99 76 89)(67 100 77 90)(68 81 78 91)(69 82 79 92)(70 83 80 93)(121 157 131 147)(122 158 132 148)(123 159 133 149)(124 160 134 150)(125 141 135 151)(126 142 136 152)(127 143 137 153)(128 144 138 154)(129 145 139 155)(130 146 140 156)
(1 47 11 57)(2 58 12 48)(3 49 13 59)(4 60 14 50)(5 51 15 41)(6 42 16 52)(7 53 17 43)(8 44 18 54)(9 55 19 45)(10 46 20 56)(21 101 31 111)(22 112 32 102)(23 103 33 113)(24 114 34 104)(25 105 35 115)(26 116 36 106)(27 107 37 117)(28 118 38 108)(29 109 39 119)(30 120 40 110)(61 138 71 128)(62 129 72 139)(63 140 73 130)(64 131 74 121)(65 122 75 132)(66 133 76 123)(67 124 77 134)(68 135 78 125)(69 126 79 136)(70 137 80 127)(81 141 91 151)(82 152 92 142)(83 143 93 153)(84 154 94 144)(85 145 95 155)(86 156 96 146)(87 147 97 157)(88 158 98 148)(89 149 99 159)(90 160 100 150)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 35 11 25)(2 24 12 34)(3 33 13 23)(4 22 14 32)(5 31 15 21)(6 40 16 30)(7 29 17 39)(8 38 18 28)(9 27 19 37)(10 36 20 26)(41 111 51 101)(42 120 52 110)(43 109 53 119)(44 118 54 108)(45 107 55 117)(46 116 56 106)(47 105 57 115)(48 114 58 104)(49 103 59 113)(50 112 60 102)(61 95 71 85)(62 84 72 94)(63 93 73 83)(64 82 74 92)(65 91 75 81)(66 100 76 90)(67 89 77 99)(68 98 78 88)(69 87 79 97)(70 96 80 86)(121 152 131 142)(122 141 132 151)(123 150 133 160)(124 159 134 149)(125 148 135 158)(126 157 136 147)(127 146 137 156)(128 155 138 145)(129 144 139 154)(130 153 140 143)
G:=sub<Sym(160)| (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,91)(8,92)(9,93)(10,94)(11,95)(12,96)(13,97)(14,98)(15,99)(16,100)(17,81)(18,82)(19,83)(20,84)(21,67)(22,68)(23,69)(24,70)(25,71)(26,72)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,79)(34,80)(35,61)(36,62)(37,63)(38,64)(39,65)(40,66)(41,159)(42,160)(43,141)(44,142)(45,143)(46,144)(47,145)(48,146)(49,147)(50,148)(51,149)(52,150)(53,151)(54,152)(55,153)(56,154)(57,155)(58,156)(59,157)(60,158)(101,124)(102,125)(103,126)(104,127)(105,128)(106,129)(107,130)(108,131)(109,132)(110,133)(111,134)(112,135)(113,136)(114,137)(115,138)(116,139)(117,140)(118,121)(119,122)(120,123), (1,36,11,26)(2,37,12,27)(3,38,13,28)(4,39,14,29)(5,40,15,30)(6,21,16,31)(7,22,17,32)(8,23,18,33)(9,24,19,34)(10,25,20,35)(41,110,51,120)(42,111,52,101)(43,112,53,102)(44,113,54,103)(45,114,55,104)(46,115,56,105)(47,116,57,106)(48,117,58,107)(49,118,59,108)(50,119,60,109)(61,94,71,84)(62,95,72,85)(63,96,73,86)(64,97,74,87)(65,98,75,88)(66,99,76,89)(67,100,77,90)(68,81,78,91)(69,82,79,92)(70,83,80,93)(121,157,131,147)(122,158,132,148)(123,159,133,149)(124,160,134,150)(125,141,135,151)(126,142,136,152)(127,143,137,153)(128,144,138,154)(129,145,139,155)(130,146,140,156), (1,47,11,57)(2,58,12,48)(3,49,13,59)(4,60,14,50)(5,51,15,41)(6,42,16,52)(7,53,17,43)(8,44,18,54)(9,55,19,45)(10,46,20,56)(21,101,31,111)(22,112,32,102)(23,103,33,113)(24,114,34,104)(25,105,35,115)(26,116,36,106)(27,107,37,117)(28,118,38,108)(29,109,39,119)(30,120,40,110)(61,138,71,128)(62,129,72,139)(63,140,73,130)(64,131,74,121)(65,122,75,132)(66,133,76,123)(67,124,77,134)(68,135,78,125)(69,126,79,136)(70,137,80,127)(81,141,91,151)(82,152,92,142)(83,143,93,153)(84,154,94,144)(85,145,95,155)(86,156,96,146)(87,147,97,157)(88,158,98,148)(89,149,99,159)(90,160,100,150), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,35,11,25)(2,24,12,34)(3,33,13,23)(4,22,14,32)(5,31,15,21)(6,40,16,30)(7,29,17,39)(8,38,18,28)(9,27,19,37)(10,36,20,26)(41,111,51,101)(42,120,52,110)(43,109,53,119)(44,118,54,108)(45,107,55,117)(46,116,56,106)(47,105,57,115)(48,114,58,104)(49,103,59,113)(50,112,60,102)(61,95,71,85)(62,84,72,94)(63,93,73,83)(64,82,74,92)(65,91,75,81)(66,100,76,90)(67,89,77,99)(68,98,78,88)(69,87,79,97)(70,96,80,86)(121,152,131,142)(122,141,132,151)(123,150,133,160)(124,159,134,149)(125,148,135,158)(126,157,136,147)(127,146,137,156)(128,155,138,145)(129,144,139,154)(130,153,140,143)>;
G:=Group( (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,91)(8,92)(9,93)(10,94)(11,95)(12,96)(13,97)(14,98)(15,99)(16,100)(17,81)(18,82)(19,83)(20,84)(21,67)(22,68)(23,69)(24,70)(25,71)(26,72)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,79)(34,80)(35,61)(36,62)(37,63)(38,64)(39,65)(40,66)(41,159)(42,160)(43,141)(44,142)(45,143)(46,144)(47,145)(48,146)(49,147)(50,148)(51,149)(52,150)(53,151)(54,152)(55,153)(56,154)(57,155)(58,156)(59,157)(60,158)(101,124)(102,125)(103,126)(104,127)(105,128)(106,129)(107,130)(108,131)(109,132)(110,133)(111,134)(112,135)(113,136)(114,137)(115,138)(116,139)(117,140)(118,121)(119,122)(120,123), (1,36,11,26)(2,37,12,27)(3,38,13,28)(4,39,14,29)(5,40,15,30)(6,21,16,31)(7,22,17,32)(8,23,18,33)(9,24,19,34)(10,25,20,35)(41,110,51,120)(42,111,52,101)(43,112,53,102)(44,113,54,103)(45,114,55,104)(46,115,56,105)(47,116,57,106)(48,117,58,107)(49,118,59,108)(50,119,60,109)(61,94,71,84)(62,95,72,85)(63,96,73,86)(64,97,74,87)(65,98,75,88)(66,99,76,89)(67,100,77,90)(68,81,78,91)(69,82,79,92)(70,83,80,93)(121,157,131,147)(122,158,132,148)(123,159,133,149)(124,160,134,150)(125,141,135,151)(126,142,136,152)(127,143,137,153)(128,144,138,154)(129,145,139,155)(130,146,140,156), (1,47,11,57)(2,58,12,48)(3,49,13,59)(4,60,14,50)(5,51,15,41)(6,42,16,52)(7,53,17,43)(8,44,18,54)(9,55,19,45)(10,46,20,56)(21,101,31,111)(22,112,32,102)(23,103,33,113)(24,114,34,104)(25,105,35,115)(26,116,36,106)(27,107,37,117)(28,118,38,108)(29,109,39,119)(30,120,40,110)(61,138,71,128)(62,129,72,139)(63,140,73,130)(64,131,74,121)(65,122,75,132)(66,133,76,123)(67,124,77,134)(68,135,78,125)(69,126,79,136)(70,137,80,127)(81,141,91,151)(82,152,92,142)(83,143,93,153)(84,154,94,144)(85,145,95,155)(86,156,96,146)(87,147,97,157)(88,158,98,148)(89,149,99,159)(90,160,100,150), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,35,11,25)(2,24,12,34)(3,33,13,23)(4,22,14,32)(5,31,15,21)(6,40,16,30)(7,29,17,39)(8,38,18,28)(9,27,19,37)(10,36,20,26)(41,111,51,101)(42,120,52,110)(43,109,53,119)(44,118,54,108)(45,107,55,117)(46,116,56,106)(47,105,57,115)(48,114,58,104)(49,103,59,113)(50,112,60,102)(61,95,71,85)(62,84,72,94)(63,93,73,83)(64,82,74,92)(65,91,75,81)(66,100,76,90)(67,89,77,99)(68,98,78,88)(69,87,79,97)(70,96,80,86)(121,152,131,142)(122,141,132,151)(123,150,133,160)(124,159,134,149)(125,148,135,158)(126,157,136,147)(127,146,137,156)(128,155,138,145)(129,144,139,154)(130,153,140,143) );
G=PermutationGroup([(1,85),(2,86),(3,87),(4,88),(5,89),(6,90),(7,91),(8,92),(9,93),(10,94),(11,95),(12,96),(13,97),(14,98),(15,99),(16,100),(17,81),(18,82),(19,83),(20,84),(21,67),(22,68),(23,69),(24,70),(25,71),(26,72),(27,73),(28,74),(29,75),(30,76),(31,77),(32,78),(33,79),(34,80),(35,61),(36,62),(37,63),(38,64),(39,65),(40,66),(41,159),(42,160),(43,141),(44,142),(45,143),(46,144),(47,145),(48,146),(49,147),(50,148),(51,149),(52,150),(53,151),(54,152),(55,153),(56,154),(57,155),(58,156),(59,157),(60,158),(101,124),(102,125),(103,126),(104,127),(105,128),(106,129),(107,130),(108,131),(109,132),(110,133),(111,134),(112,135),(113,136),(114,137),(115,138),(116,139),(117,140),(118,121),(119,122),(120,123)], [(1,36,11,26),(2,37,12,27),(3,38,13,28),(4,39,14,29),(5,40,15,30),(6,21,16,31),(7,22,17,32),(8,23,18,33),(9,24,19,34),(10,25,20,35),(41,110,51,120),(42,111,52,101),(43,112,53,102),(44,113,54,103),(45,114,55,104),(46,115,56,105),(47,116,57,106),(48,117,58,107),(49,118,59,108),(50,119,60,109),(61,94,71,84),(62,95,72,85),(63,96,73,86),(64,97,74,87),(65,98,75,88),(66,99,76,89),(67,100,77,90),(68,81,78,91),(69,82,79,92),(70,83,80,93),(121,157,131,147),(122,158,132,148),(123,159,133,149),(124,160,134,150),(125,141,135,151),(126,142,136,152),(127,143,137,153),(128,144,138,154),(129,145,139,155),(130,146,140,156)], [(1,47,11,57),(2,58,12,48),(3,49,13,59),(4,60,14,50),(5,51,15,41),(6,42,16,52),(7,53,17,43),(8,44,18,54),(9,55,19,45),(10,46,20,56),(21,101,31,111),(22,112,32,102),(23,103,33,113),(24,114,34,104),(25,105,35,115),(26,116,36,106),(27,107,37,117),(28,118,38,108),(29,109,39,119),(30,120,40,110),(61,138,71,128),(62,129,72,139),(63,140,73,130),(64,131,74,121),(65,122,75,132),(66,133,76,123),(67,124,77,134),(68,135,78,125),(69,126,79,136),(70,137,80,127),(81,141,91,151),(82,152,92,142),(83,143,93,153),(84,154,94,144),(85,145,95,155),(86,156,96,146),(87,147,97,157),(88,158,98,148),(89,149,99,159),(90,160,100,150)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,35,11,25),(2,24,12,34),(3,33,13,23),(4,22,14,32),(5,31,15,21),(6,40,16,30),(7,29,17,39),(8,38,18,28),(9,27,19,37),(10,36,20,26),(41,111,51,101),(42,120,52,110),(43,109,53,119),(44,118,54,108),(45,107,55,117),(46,116,56,106),(47,105,57,115),(48,114,58,104),(49,103,59,113),(50,112,60,102),(61,95,71,85),(62,84,72,94),(63,93,73,83),(64,82,74,92),(65,91,75,81),(66,100,76,90),(67,89,77,99),(68,98,78,88),(69,87,79,97),(70,96,80,86),(121,152,131,142),(122,141,132,151),(123,150,133,160),(124,159,134,149),(125,148,135,158),(126,157,136,147),(127,146,137,156),(128,155,138,145),(129,144,139,154),(130,153,140,143)])
Matrix representation ►G ⊆ GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 40 | 27 | 0 |
0 | 0 | 8 | 37 | 0 | 27 |
0 | 0 | 27 | 0 | 37 | 1 |
0 | 0 | 0 | 27 | 33 | 4 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
1 | 35 | 0 | 0 | 0 | 0 |
6 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 33 | 1 | 1 | 34 |
0 | 0 | 33 | 0 | 15 | 27 |
0 | 0 | 1 | 34 | 8 | 40 |
0 | 0 | 15 | 27 | 8 | 0 |
1 | 35 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 24 | 23 | 0 | 0 |
0 | 0 | 7 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 18 |
0 | 0 | 0 | 0 | 34 | 24 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,8,27,0,0,0,40,37,0,27,0,0,27,0,37,33,0,0,0,27,1,4],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,1,0,0,0,0,0,0,1,0,0],[1,6,0,0,0,0,35,6,0,0,0,0,0,0,33,33,1,15,0,0,1,0,34,27,0,0,1,15,8,8,0,0,34,27,40,0],[1,0,0,0,0,0,35,40,0,0,0,0,0,0,24,7,0,0,0,0,23,17,0,0,0,0,0,0,17,34,0,0,0,0,18,24] >;
74 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2M | 4A | ··· | 4L | 4M | ··· | 4T | 5A | 5B | 10A | ··· | 10N | 20A | ··· | 20X |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 10 | ··· | 10 | 2 | ··· | 2 | 10 | ··· | 10 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
74 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D5 | D10 | D10 | 2- (1+4) | Q8.10D10 |
kernel | C2×Q8.10D10 | C2×C4○D20 | C2×Q8×D5 | C2×Q8⋊2D5 | Q8.10D10 | Q8×C2×C10 | C22×Q8 | C22×C4 | C2×Q8 | C10 | C2 |
# reps | 1 | 6 | 4 | 4 | 16 | 1 | 2 | 6 | 24 | 2 | 8 |
In GAP, Magma, Sage, TeX
C_2\times Q_8._{10}D_{10}
% in TeX
G:=Group("C2xQ8.10D10");
// GroupNames label
G:=SmallGroup(320,1617);
// by ID
G=gap.SmallGroup(320,1617);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,297,136,1684,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=1,c^2=d^10=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=e*c*e^-1=b^2*c,e*d*e^-1=d^9>;
// generators/relations