direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×Q8.Dic5, C20.75C24, C10⋊5(C8○D4), C4○D4.44D10, (D4×C10).25C4, (Q8×C10).22C4, C4○D4.4Dic5, Q8.9(C2×Dic5), D4.8(C2×Dic5), C4.74(C23×D5), C10.69(C23×C4), C5⋊2C8.44C23, (C2×Q8).10Dic5, (C2×D4).12Dic5, (C2×C20).553C23, C20.156(C22×C4), (C22×C4).386D10, C4.Dic5⋊34C22, C23.19(C2×Dic5), C2.10(C23×Dic5), C4.40(C22×Dic5), (C22×C20).288C22, C22.33(C22×Dic5), C5⋊7(C2×C8○D4), (C5×C4○D4).7C4, (C10×C4○D4).9C2, (C2×C4○D4).13D5, (C5×D4).39(C2×C4), (C5×Q8).42(C2×C4), (C2×C20).308(C2×C4), (C22×C5⋊2C8)⋊14C2, (C2×C5⋊2C8)⋊41C22, (C2×C4.Dic5)⋊28C2, (C2×C4).56(C2×Dic5), (C5×C4○D4).48C22, (C2×C4).831(C22×D5), (C22×C10).148(C2×C4), (C2×C10).129(C22×C4), SmallGroup(320,1490)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — C20 — C5⋊2C8 — C2×C5⋊2C8 — C22×C5⋊2C8 — C2×Q8.Dic5 |
Subgroups: 494 in 266 conjugacy classes, 191 normal (18 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×2], C4 [×6], C22, C22 [×6], C22 [×6], C5, C8 [×8], C2×C4, C2×C4 [×15], D4 [×12], Q8 [×4], C23 [×3], C10, C10 [×2], C10 [×6], C2×C8 [×16], M4(2) [×12], C22×C4 [×3], C2×D4 [×3], C2×Q8, C4○D4 [×8], C20 [×2], C20 [×6], C2×C10, C2×C10 [×6], C2×C10 [×6], C22×C8 [×3], C2×M4(2) [×3], C8○D4 [×8], C2×C4○D4, C5⋊2C8 [×8], C2×C20, C2×C20 [×15], C5×D4 [×12], C5×Q8 [×4], C22×C10 [×3], C2×C8○D4, C2×C5⋊2C8, C2×C5⋊2C8 [×15], C4.Dic5 [×12], C22×C20 [×3], D4×C10 [×3], Q8×C10, C5×C4○D4 [×8], C22×C5⋊2C8 [×3], C2×C4.Dic5 [×3], Q8.Dic5 [×8], C10×C4○D4, C2×Q8.Dic5
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], D5, C22×C4 [×14], C24, Dic5 [×8], D10 [×7], C8○D4 [×2], C23×C4, C2×Dic5 [×28], C22×D5 [×7], C2×C8○D4, C22×Dic5 [×14], C23×D5, Q8.Dic5 [×2], C23×Dic5, C2×Q8.Dic5
Generators and relations
G = < a,b,c,d,e | a2=b4=1, c2=d10=b2, e2=d5, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d9 >
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 66)(42 67)(43 68)(44 69)(45 70)(46 71)(47 72)(48 73)(49 74)(50 75)(51 76)(52 77)(53 78)(54 79)(55 80)(56 61)(57 62)(58 63)(59 64)(60 65)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(121 158)(122 159)(123 160)(124 141)(125 142)(126 143)(127 144)(128 145)(129 146)(130 147)(131 148)(132 149)(133 150)(134 151)(135 152)(136 153)(137 154)(138 155)(139 156)(140 157)
(1 41 11 51)(2 42 12 52)(3 43 13 53)(4 44 14 54)(5 45 15 55)(6 46 16 56)(7 47 17 57)(8 48 18 58)(9 49 19 59)(10 50 20 60)(21 66 31 76)(22 67 32 77)(23 68 33 78)(24 69 34 79)(25 70 35 80)(26 71 36 61)(27 72 37 62)(28 73 38 63)(29 74 39 64)(30 75 40 65)(81 140 91 130)(82 121 92 131)(83 122 93 132)(84 123 94 133)(85 124 95 134)(86 125 96 135)(87 126 97 136)(88 127 98 137)(89 128 99 138)(90 129 100 139)(101 157 111 147)(102 158 112 148)(103 159 113 149)(104 160 114 150)(105 141 115 151)(106 142 116 152)(107 143 117 153)(108 144 118 154)(109 145 119 155)(110 146 120 156)
(1 6 11 16)(2 7 12 17)(3 8 13 18)(4 9 14 19)(5 10 15 20)(21 26 31 36)(22 27 32 37)(23 28 33 38)(24 29 34 39)(25 30 35 40)(41 56 51 46)(42 57 52 47)(43 58 53 48)(44 59 54 49)(45 60 55 50)(61 76 71 66)(62 77 72 67)(63 78 73 68)(64 79 74 69)(65 80 75 70)(81 86 91 96)(82 87 92 97)(83 88 93 98)(84 89 94 99)(85 90 95 100)(101 106 111 116)(102 107 112 117)(103 108 113 118)(104 109 114 119)(105 110 115 120)(121 136 131 126)(122 137 132 127)(123 138 133 128)(124 139 134 129)(125 140 135 130)(141 156 151 146)(142 157 152 147)(143 158 153 148)(144 159 154 149)(145 160 155 150)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 107 6 112 11 117 16 102)(2 116 7 101 12 106 17 111)(3 105 8 110 13 115 18 120)(4 114 9 119 14 104 19 109)(5 103 10 108 15 113 20 118)(21 87 26 92 31 97 36 82)(22 96 27 81 32 86 37 91)(23 85 28 90 33 95 38 100)(24 94 29 99 34 84 39 89)(25 83 30 88 35 93 40 98)(41 143 46 148 51 153 56 158)(42 152 47 157 52 142 57 147)(43 141 48 146 53 151 58 156)(44 150 49 155 54 160 59 145)(45 159 50 144 55 149 60 154)(61 121 66 126 71 131 76 136)(62 130 67 135 72 140 77 125)(63 139 68 124 73 129 78 134)(64 128 69 133 74 138 79 123)(65 137 70 122 75 127 80 132)
G:=sub<Sym(160)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,73)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,61)(57,62)(58,63)(59,64)(60,65)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,158)(122,159)(123,160)(124,141)(125,142)(126,143)(127,144)(128,145)(129,146)(130,147)(131,148)(132,149)(133,150)(134,151)(135,152)(136,153)(137,154)(138,155)(139,156)(140,157), (1,41,11,51)(2,42,12,52)(3,43,13,53)(4,44,14,54)(5,45,15,55)(6,46,16,56)(7,47,17,57)(8,48,18,58)(9,49,19,59)(10,50,20,60)(21,66,31,76)(22,67,32,77)(23,68,33,78)(24,69,34,79)(25,70,35,80)(26,71,36,61)(27,72,37,62)(28,73,38,63)(29,74,39,64)(30,75,40,65)(81,140,91,130)(82,121,92,131)(83,122,93,132)(84,123,94,133)(85,124,95,134)(86,125,96,135)(87,126,97,136)(88,127,98,137)(89,128,99,138)(90,129,100,139)(101,157,111,147)(102,158,112,148)(103,159,113,149)(104,160,114,150)(105,141,115,151)(106,142,116,152)(107,143,117,153)(108,144,118,154)(109,145,119,155)(110,146,120,156), (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,26,31,36)(22,27,32,37)(23,28,33,38)(24,29,34,39)(25,30,35,40)(41,56,51,46)(42,57,52,47)(43,58,53,48)(44,59,54,49)(45,60,55,50)(61,76,71,66)(62,77,72,67)(63,78,73,68)(64,79,74,69)(65,80,75,70)(81,86,91,96)(82,87,92,97)(83,88,93,98)(84,89,94,99)(85,90,95,100)(101,106,111,116)(102,107,112,117)(103,108,113,118)(104,109,114,119)(105,110,115,120)(121,136,131,126)(122,137,132,127)(123,138,133,128)(124,139,134,129)(125,140,135,130)(141,156,151,146)(142,157,152,147)(143,158,153,148)(144,159,154,149)(145,160,155,150), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,107,6,112,11,117,16,102)(2,116,7,101,12,106,17,111)(3,105,8,110,13,115,18,120)(4,114,9,119,14,104,19,109)(5,103,10,108,15,113,20,118)(21,87,26,92,31,97,36,82)(22,96,27,81,32,86,37,91)(23,85,28,90,33,95,38,100)(24,94,29,99,34,84,39,89)(25,83,30,88,35,93,40,98)(41,143,46,148,51,153,56,158)(42,152,47,157,52,142,57,147)(43,141,48,146,53,151,58,156)(44,150,49,155,54,160,59,145)(45,159,50,144,55,149,60,154)(61,121,66,126,71,131,76,136)(62,130,67,135,72,140,77,125)(63,139,68,124,73,129,78,134)(64,128,69,133,74,138,79,123)(65,137,70,122,75,127,80,132)>;
G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,73)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,61)(57,62)(58,63)(59,64)(60,65)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,158)(122,159)(123,160)(124,141)(125,142)(126,143)(127,144)(128,145)(129,146)(130,147)(131,148)(132,149)(133,150)(134,151)(135,152)(136,153)(137,154)(138,155)(139,156)(140,157), (1,41,11,51)(2,42,12,52)(3,43,13,53)(4,44,14,54)(5,45,15,55)(6,46,16,56)(7,47,17,57)(8,48,18,58)(9,49,19,59)(10,50,20,60)(21,66,31,76)(22,67,32,77)(23,68,33,78)(24,69,34,79)(25,70,35,80)(26,71,36,61)(27,72,37,62)(28,73,38,63)(29,74,39,64)(30,75,40,65)(81,140,91,130)(82,121,92,131)(83,122,93,132)(84,123,94,133)(85,124,95,134)(86,125,96,135)(87,126,97,136)(88,127,98,137)(89,128,99,138)(90,129,100,139)(101,157,111,147)(102,158,112,148)(103,159,113,149)(104,160,114,150)(105,141,115,151)(106,142,116,152)(107,143,117,153)(108,144,118,154)(109,145,119,155)(110,146,120,156), (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,26,31,36)(22,27,32,37)(23,28,33,38)(24,29,34,39)(25,30,35,40)(41,56,51,46)(42,57,52,47)(43,58,53,48)(44,59,54,49)(45,60,55,50)(61,76,71,66)(62,77,72,67)(63,78,73,68)(64,79,74,69)(65,80,75,70)(81,86,91,96)(82,87,92,97)(83,88,93,98)(84,89,94,99)(85,90,95,100)(101,106,111,116)(102,107,112,117)(103,108,113,118)(104,109,114,119)(105,110,115,120)(121,136,131,126)(122,137,132,127)(123,138,133,128)(124,139,134,129)(125,140,135,130)(141,156,151,146)(142,157,152,147)(143,158,153,148)(144,159,154,149)(145,160,155,150), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,107,6,112,11,117,16,102)(2,116,7,101,12,106,17,111)(3,105,8,110,13,115,18,120)(4,114,9,119,14,104,19,109)(5,103,10,108,15,113,20,118)(21,87,26,92,31,97,36,82)(22,96,27,81,32,86,37,91)(23,85,28,90,33,95,38,100)(24,94,29,99,34,84,39,89)(25,83,30,88,35,93,40,98)(41,143,46,148,51,153,56,158)(42,152,47,157,52,142,57,147)(43,141,48,146,53,151,58,156)(44,150,49,155,54,160,59,145)(45,159,50,144,55,149,60,154)(61,121,66,126,71,131,76,136)(62,130,67,135,72,140,77,125)(63,139,68,124,73,129,78,134)(64,128,69,133,74,138,79,123)(65,137,70,122,75,127,80,132) );
G=PermutationGroup([(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,66),(42,67),(43,68),(44,69),(45,70),(46,71),(47,72),(48,73),(49,74),(50,75),(51,76),(52,77),(53,78),(54,79),(55,80),(56,61),(57,62),(58,63),(59,64),(60,65),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(121,158),(122,159),(123,160),(124,141),(125,142),(126,143),(127,144),(128,145),(129,146),(130,147),(131,148),(132,149),(133,150),(134,151),(135,152),(136,153),(137,154),(138,155),(139,156),(140,157)], [(1,41,11,51),(2,42,12,52),(3,43,13,53),(4,44,14,54),(5,45,15,55),(6,46,16,56),(7,47,17,57),(8,48,18,58),(9,49,19,59),(10,50,20,60),(21,66,31,76),(22,67,32,77),(23,68,33,78),(24,69,34,79),(25,70,35,80),(26,71,36,61),(27,72,37,62),(28,73,38,63),(29,74,39,64),(30,75,40,65),(81,140,91,130),(82,121,92,131),(83,122,93,132),(84,123,94,133),(85,124,95,134),(86,125,96,135),(87,126,97,136),(88,127,98,137),(89,128,99,138),(90,129,100,139),(101,157,111,147),(102,158,112,148),(103,159,113,149),(104,160,114,150),(105,141,115,151),(106,142,116,152),(107,143,117,153),(108,144,118,154),(109,145,119,155),(110,146,120,156)], [(1,6,11,16),(2,7,12,17),(3,8,13,18),(4,9,14,19),(5,10,15,20),(21,26,31,36),(22,27,32,37),(23,28,33,38),(24,29,34,39),(25,30,35,40),(41,56,51,46),(42,57,52,47),(43,58,53,48),(44,59,54,49),(45,60,55,50),(61,76,71,66),(62,77,72,67),(63,78,73,68),(64,79,74,69),(65,80,75,70),(81,86,91,96),(82,87,92,97),(83,88,93,98),(84,89,94,99),(85,90,95,100),(101,106,111,116),(102,107,112,117),(103,108,113,118),(104,109,114,119),(105,110,115,120),(121,136,131,126),(122,137,132,127),(123,138,133,128),(124,139,134,129),(125,140,135,130),(141,156,151,146),(142,157,152,147),(143,158,153,148),(144,159,154,149),(145,160,155,150)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,107,6,112,11,117,16,102),(2,116,7,101,12,106,17,111),(3,105,8,110,13,115,18,120),(4,114,9,119,14,104,19,109),(5,103,10,108,15,113,20,118),(21,87,26,92,31,97,36,82),(22,96,27,81,32,86,37,91),(23,85,28,90,33,95,38,100),(24,94,29,99,34,84,39,89),(25,83,30,88,35,93,40,98),(41,143,46,148,51,153,56,158),(42,152,47,157,52,142,57,147),(43,141,48,146,53,151,58,156),(44,150,49,155,54,160,59,145),(45,159,50,144,55,149,60,154),(61,121,66,126,71,131,76,136),(62,130,67,135,72,140,77,125),(63,139,68,124,73,129,78,134),(64,128,69,133,74,138,79,123),(65,137,70,122,75,127,80,132)])
Matrix representation ►G ⊆ GL4(𝔽41) generated by
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 0 | 9 |
0 | 0 | 9 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 0 | 32 |
40 | 40 | 0 | 0 |
8 | 7 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 0 | 9 |
9 | 25 | 0 | 0 |
5 | 32 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 3 |
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,0,9,0,0,9,0],[1,0,0,0,0,1,0,0,0,0,9,0,0,0,0,32],[40,8,0,0,40,7,0,0,0,0,9,0,0,0,0,9],[9,5,0,0,25,32,0,0,0,0,3,0,0,0,0,3] >;
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 5A | 5B | 8A | ··· | 8H | 8I | ··· | 8T | 10A | ··· | 10F | 10G | ··· | 10R | 20A | ··· | 20H | 20I | ··· | 20T |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 8 | ··· | 8 | 8 | ··· | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 2 | 5 | ··· | 5 | 10 | ··· | 10 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | - | - | - | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D5 | D10 | Dic5 | Dic5 | Dic5 | D10 | C8○D4 | Q8.Dic5 |
kernel | C2×Q8.Dic5 | C22×C5⋊2C8 | C2×C4.Dic5 | Q8.Dic5 | C10×C4○D4 | D4×C10 | Q8×C10 | C5×C4○D4 | C2×C4○D4 | C22×C4 | C2×D4 | C2×Q8 | C4○D4 | C4○D4 | C10 | C2 |
# reps | 1 | 3 | 3 | 8 | 1 | 6 | 2 | 8 | 2 | 6 | 6 | 2 | 8 | 8 | 8 | 8 |
In GAP, Magma, Sage, TeX
C_2\times Q_8.Dic_5
% in TeX
G:=Group("C2xQ8.Dic5");
// GroupNames label
G:=SmallGroup(320,1490);
// by ID
G=gap.SmallGroup(320,1490);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,297,102,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=1,c^2=d^10=b^2,e^2=d^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^9>;
// generators/relations