Copied to
clipboard

?

G = C5×D46D4order 320 = 26·5

Direct product of C5 and D46D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×D46D4, C10.1172- (1+4), D46(C5×D4), (C5×D4)⋊24D4, C4⋊Q813C10, (C4×D4)⋊16C10, (D4×C20)⋊45C2, C4.41(D4×C10), C2016(C4○D4), C4⋊D412C10, C20.402(C2×D4), C22⋊Q812C10, C22.6(D4×C10), C42.42(C2×C10), (C4×C20).283C22, (C2×C10).367C24, (C2×C20).675C23, C22.D49C10, C10.195(C22×D4), C2.9(C5×2- (1+4)), (D4×C10).321C22, C23.41(C22×C10), (C22×C10).99C23, C22.41(C23×C10), (Q8×C10).273C22, (C22×C20).453C22, C42(C5×C4○D4), (C5×C4⋊Q8)⋊34C2, (C10×C4⋊C4)⋊47C2, (C2×C4⋊C4)⋊20C10, C2.19(D4×C2×C10), (C2×C4○D4)⋊7C10, (C10×C4○D4)⋊23C2, C4⋊C4.31(C2×C10), (C5×C4⋊D4)⋊39C2, C2.21(C10×C4○D4), (C5×C22⋊Q8)⋊39C2, (C2×D4).66(C2×C10), C10.240(C2×C4○D4), (C2×C10).183(C2×D4), C22⋊C4.5(C2×C10), (C2×Q8).60(C2×C10), (C5×C4⋊C4).395C22, (C2×C4).33(C22×C10), (C22×C4).65(C2×C10), (C5×C22.D4)⋊28C2, (C5×C22⋊C4).87C22, SmallGroup(320,1549)

Series: Derived Chief Lower central Upper central

C1C22 — C5×D46D4
C1C2C22C2×C10C2×C20D4×C10C5×C22.D4 — C5×D46D4
C1C22 — C5×D46D4
C1C2×C10 — C5×D46D4

Subgroups: 426 in 292 conjugacy classes, 166 normal (34 characteristic)
C1, C2 [×3], C2 [×6], C4 [×4], C4 [×9], C22, C22 [×4], C22 [×10], C5, C2×C4 [×3], C2×C4 [×8], C2×C4 [×16], D4 [×4], D4 [×10], Q8 [×4], C23 [×4], C10 [×3], C10 [×6], C42, C22⋊C4 [×8], C4⋊C4 [×2], C4⋊C4 [×8], C22×C4 [×8], C2×D4 [×2], C2×D4 [×4], C2×Q8 [×2], C4○D4 [×8], C20 [×4], C20 [×9], C2×C10, C2×C10 [×4], C2×C10 [×10], C2×C4⋊C4 [×2], C4×D4 [×2], C4⋊D4 [×2], C22⋊Q8 [×2], C22.D4 [×4], C4⋊Q8, C2×C4○D4 [×2], C2×C20 [×3], C2×C20 [×8], C2×C20 [×16], C5×D4 [×4], C5×D4 [×10], C5×Q8 [×4], C22×C10 [×4], D46D4, C4×C20, C5×C22⋊C4 [×8], C5×C4⋊C4 [×2], C5×C4⋊C4 [×8], C22×C20 [×8], D4×C10 [×2], D4×C10 [×4], Q8×C10 [×2], C5×C4○D4 [×8], C10×C4⋊C4 [×2], D4×C20 [×2], C5×C4⋊D4 [×2], C5×C22⋊Q8 [×2], C5×C22.D4 [×4], C5×C4⋊Q8, C10×C4○D4 [×2], C5×D46D4

Quotients:
C1, C2 [×15], C22 [×35], C5, D4 [×4], C23 [×15], C10 [×15], C2×D4 [×6], C4○D4 [×2], C24, C2×C10 [×35], C22×D4, C2×C4○D4, 2- (1+4), C5×D4 [×4], C22×C10 [×15], D46D4, D4×C10 [×6], C5×C4○D4 [×2], C23×C10, D4×C2×C10, C10×C4○D4, C5×2- (1+4), C5×D46D4

Generators and relations
 G = < a,b,c,d,e | a5=b4=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b2c, ede=d-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 135 35 116)(2 131 31 117)(3 132 32 118)(4 133 33 119)(5 134 34 120)(6 70 16 63)(7 66 17 64)(8 67 18 65)(9 68 19 61)(10 69 20 62)(11 75 156 56)(12 71 157 57)(13 72 158 58)(14 73 159 59)(15 74 160 60)(21 128 28 121)(22 129 29 122)(23 130 30 123)(24 126 26 124)(25 127 27 125)(36 115 55 96)(37 111 51 97)(38 112 52 98)(39 113 53 99)(40 114 54 100)(41 108 48 101)(42 109 49 102)(43 110 50 103)(44 106 46 104)(45 107 47 105)(76 155 95 136)(77 151 91 137)(78 152 92 138)(79 153 93 139)(80 154 94 140)(81 148 88 141)(82 149 89 142)(83 150 90 143)(84 146 86 144)(85 147 87 145)
(1 110)(2 106)(3 107)(4 108)(5 109)(6 76)(7 77)(8 78)(9 79)(10 80)(11 83)(12 84)(13 85)(14 81)(15 82)(16 95)(17 91)(18 92)(19 93)(20 94)(21 113)(22 114)(23 115)(24 111)(25 112)(26 97)(27 98)(28 99)(29 100)(30 96)(31 104)(32 105)(33 101)(34 102)(35 103)(36 130)(37 126)(38 127)(39 128)(40 129)(41 133)(42 134)(43 135)(44 131)(45 132)(46 117)(47 118)(48 119)(49 120)(50 116)(51 124)(52 125)(53 121)(54 122)(55 123)(56 150)(57 146)(58 147)(59 148)(60 149)(61 153)(62 154)(63 155)(64 151)(65 152)(66 137)(67 138)(68 139)(69 140)(70 136)(71 144)(72 145)(73 141)(74 142)(75 143)(86 157)(87 158)(88 159)(89 160)(90 156)
(1 6 30 156)(2 7 26 157)(3 8 27 158)(4 9 28 159)(5 10 29 160)(11 35 16 23)(12 31 17 24)(13 32 18 25)(14 33 19 21)(15 34 20 22)(36 143 50 155)(37 144 46 151)(38 145 47 152)(39 141 48 153)(40 142 49 154)(41 139 53 148)(42 140 54 149)(43 136 55 150)(44 137 51 146)(45 138 52 147)(56 135 70 123)(57 131 66 124)(58 132 67 125)(59 133 68 121)(60 134 69 122)(61 128 73 119)(62 129 74 120)(63 130 75 116)(64 126 71 117)(65 127 72 118)(76 96 90 110)(77 97 86 106)(78 98 87 107)(79 99 88 108)(80 100 89 109)(81 101 93 113)(82 102 94 114)(83 103 95 115)(84 104 91 111)(85 105 92 112)
(1 30)(2 26)(3 27)(4 28)(5 29)(21 33)(22 34)(23 35)(24 31)(25 32)(36 43)(37 44)(38 45)(39 41)(40 42)(46 51)(47 52)(48 53)(49 54)(50 55)(76 95)(77 91)(78 92)(79 93)(80 94)(81 88)(82 89)(83 90)(84 86)(85 87)(96 103)(97 104)(98 105)(99 101)(100 102)(106 111)(107 112)(108 113)(109 114)(110 115)(116 130)(117 126)(118 127)(119 128)(120 129)(121 133)(122 134)(123 135)(124 131)(125 132)(136 155)(137 151)(138 152)(139 153)(140 154)(141 148)(142 149)(143 150)(144 146)(145 147)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,135,35,116)(2,131,31,117)(3,132,32,118)(4,133,33,119)(5,134,34,120)(6,70,16,63)(7,66,17,64)(8,67,18,65)(9,68,19,61)(10,69,20,62)(11,75,156,56)(12,71,157,57)(13,72,158,58)(14,73,159,59)(15,74,160,60)(21,128,28,121)(22,129,29,122)(23,130,30,123)(24,126,26,124)(25,127,27,125)(36,115,55,96)(37,111,51,97)(38,112,52,98)(39,113,53,99)(40,114,54,100)(41,108,48,101)(42,109,49,102)(43,110,50,103)(44,106,46,104)(45,107,47,105)(76,155,95,136)(77,151,91,137)(78,152,92,138)(79,153,93,139)(80,154,94,140)(81,148,88,141)(82,149,89,142)(83,150,90,143)(84,146,86,144)(85,147,87,145), (1,110)(2,106)(3,107)(4,108)(5,109)(6,76)(7,77)(8,78)(9,79)(10,80)(11,83)(12,84)(13,85)(14,81)(15,82)(16,95)(17,91)(18,92)(19,93)(20,94)(21,113)(22,114)(23,115)(24,111)(25,112)(26,97)(27,98)(28,99)(29,100)(30,96)(31,104)(32,105)(33,101)(34,102)(35,103)(36,130)(37,126)(38,127)(39,128)(40,129)(41,133)(42,134)(43,135)(44,131)(45,132)(46,117)(47,118)(48,119)(49,120)(50,116)(51,124)(52,125)(53,121)(54,122)(55,123)(56,150)(57,146)(58,147)(59,148)(60,149)(61,153)(62,154)(63,155)(64,151)(65,152)(66,137)(67,138)(68,139)(69,140)(70,136)(71,144)(72,145)(73,141)(74,142)(75,143)(86,157)(87,158)(88,159)(89,160)(90,156), (1,6,30,156)(2,7,26,157)(3,8,27,158)(4,9,28,159)(5,10,29,160)(11,35,16,23)(12,31,17,24)(13,32,18,25)(14,33,19,21)(15,34,20,22)(36,143,50,155)(37,144,46,151)(38,145,47,152)(39,141,48,153)(40,142,49,154)(41,139,53,148)(42,140,54,149)(43,136,55,150)(44,137,51,146)(45,138,52,147)(56,135,70,123)(57,131,66,124)(58,132,67,125)(59,133,68,121)(60,134,69,122)(61,128,73,119)(62,129,74,120)(63,130,75,116)(64,126,71,117)(65,127,72,118)(76,96,90,110)(77,97,86,106)(78,98,87,107)(79,99,88,108)(80,100,89,109)(81,101,93,113)(82,102,94,114)(83,103,95,115)(84,104,91,111)(85,105,92,112), (1,30)(2,26)(3,27)(4,28)(5,29)(21,33)(22,34)(23,35)(24,31)(25,32)(36,43)(37,44)(38,45)(39,41)(40,42)(46,51)(47,52)(48,53)(49,54)(50,55)(76,95)(77,91)(78,92)(79,93)(80,94)(81,88)(82,89)(83,90)(84,86)(85,87)(96,103)(97,104)(98,105)(99,101)(100,102)(106,111)(107,112)(108,113)(109,114)(110,115)(116,130)(117,126)(118,127)(119,128)(120,129)(121,133)(122,134)(123,135)(124,131)(125,132)(136,155)(137,151)(138,152)(139,153)(140,154)(141,148)(142,149)(143,150)(144,146)(145,147)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,135,35,116)(2,131,31,117)(3,132,32,118)(4,133,33,119)(5,134,34,120)(6,70,16,63)(7,66,17,64)(8,67,18,65)(9,68,19,61)(10,69,20,62)(11,75,156,56)(12,71,157,57)(13,72,158,58)(14,73,159,59)(15,74,160,60)(21,128,28,121)(22,129,29,122)(23,130,30,123)(24,126,26,124)(25,127,27,125)(36,115,55,96)(37,111,51,97)(38,112,52,98)(39,113,53,99)(40,114,54,100)(41,108,48,101)(42,109,49,102)(43,110,50,103)(44,106,46,104)(45,107,47,105)(76,155,95,136)(77,151,91,137)(78,152,92,138)(79,153,93,139)(80,154,94,140)(81,148,88,141)(82,149,89,142)(83,150,90,143)(84,146,86,144)(85,147,87,145), (1,110)(2,106)(3,107)(4,108)(5,109)(6,76)(7,77)(8,78)(9,79)(10,80)(11,83)(12,84)(13,85)(14,81)(15,82)(16,95)(17,91)(18,92)(19,93)(20,94)(21,113)(22,114)(23,115)(24,111)(25,112)(26,97)(27,98)(28,99)(29,100)(30,96)(31,104)(32,105)(33,101)(34,102)(35,103)(36,130)(37,126)(38,127)(39,128)(40,129)(41,133)(42,134)(43,135)(44,131)(45,132)(46,117)(47,118)(48,119)(49,120)(50,116)(51,124)(52,125)(53,121)(54,122)(55,123)(56,150)(57,146)(58,147)(59,148)(60,149)(61,153)(62,154)(63,155)(64,151)(65,152)(66,137)(67,138)(68,139)(69,140)(70,136)(71,144)(72,145)(73,141)(74,142)(75,143)(86,157)(87,158)(88,159)(89,160)(90,156), (1,6,30,156)(2,7,26,157)(3,8,27,158)(4,9,28,159)(5,10,29,160)(11,35,16,23)(12,31,17,24)(13,32,18,25)(14,33,19,21)(15,34,20,22)(36,143,50,155)(37,144,46,151)(38,145,47,152)(39,141,48,153)(40,142,49,154)(41,139,53,148)(42,140,54,149)(43,136,55,150)(44,137,51,146)(45,138,52,147)(56,135,70,123)(57,131,66,124)(58,132,67,125)(59,133,68,121)(60,134,69,122)(61,128,73,119)(62,129,74,120)(63,130,75,116)(64,126,71,117)(65,127,72,118)(76,96,90,110)(77,97,86,106)(78,98,87,107)(79,99,88,108)(80,100,89,109)(81,101,93,113)(82,102,94,114)(83,103,95,115)(84,104,91,111)(85,105,92,112), (1,30)(2,26)(3,27)(4,28)(5,29)(21,33)(22,34)(23,35)(24,31)(25,32)(36,43)(37,44)(38,45)(39,41)(40,42)(46,51)(47,52)(48,53)(49,54)(50,55)(76,95)(77,91)(78,92)(79,93)(80,94)(81,88)(82,89)(83,90)(84,86)(85,87)(96,103)(97,104)(98,105)(99,101)(100,102)(106,111)(107,112)(108,113)(109,114)(110,115)(116,130)(117,126)(118,127)(119,128)(120,129)(121,133)(122,134)(123,135)(124,131)(125,132)(136,155)(137,151)(138,152)(139,153)(140,154)(141,148)(142,149)(143,150)(144,146)(145,147) );

G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,135,35,116),(2,131,31,117),(3,132,32,118),(4,133,33,119),(5,134,34,120),(6,70,16,63),(7,66,17,64),(8,67,18,65),(9,68,19,61),(10,69,20,62),(11,75,156,56),(12,71,157,57),(13,72,158,58),(14,73,159,59),(15,74,160,60),(21,128,28,121),(22,129,29,122),(23,130,30,123),(24,126,26,124),(25,127,27,125),(36,115,55,96),(37,111,51,97),(38,112,52,98),(39,113,53,99),(40,114,54,100),(41,108,48,101),(42,109,49,102),(43,110,50,103),(44,106,46,104),(45,107,47,105),(76,155,95,136),(77,151,91,137),(78,152,92,138),(79,153,93,139),(80,154,94,140),(81,148,88,141),(82,149,89,142),(83,150,90,143),(84,146,86,144),(85,147,87,145)], [(1,110),(2,106),(3,107),(4,108),(5,109),(6,76),(7,77),(8,78),(9,79),(10,80),(11,83),(12,84),(13,85),(14,81),(15,82),(16,95),(17,91),(18,92),(19,93),(20,94),(21,113),(22,114),(23,115),(24,111),(25,112),(26,97),(27,98),(28,99),(29,100),(30,96),(31,104),(32,105),(33,101),(34,102),(35,103),(36,130),(37,126),(38,127),(39,128),(40,129),(41,133),(42,134),(43,135),(44,131),(45,132),(46,117),(47,118),(48,119),(49,120),(50,116),(51,124),(52,125),(53,121),(54,122),(55,123),(56,150),(57,146),(58,147),(59,148),(60,149),(61,153),(62,154),(63,155),(64,151),(65,152),(66,137),(67,138),(68,139),(69,140),(70,136),(71,144),(72,145),(73,141),(74,142),(75,143),(86,157),(87,158),(88,159),(89,160),(90,156)], [(1,6,30,156),(2,7,26,157),(3,8,27,158),(4,9,28,159),(5,10,29,160),(11,35,16,23),(12,31,17,24),(13,32,18,25),(14,33,19,21),(15,34,20,22),(36,143,50,155),(37,144,46,151),(38,145,47,152),(39,141,48,153),(40,142,49,154),(41,139,53,148),(42,140,54,149),(43,136,55,150),(44,137,51,146),(45,138,52,147),(56,135,70,123),(57,131,66,124),(58,132,67,125),(59,133,68,121),(60,134,69,122),(61,128,73,119),(62,129,74,120),(63,130,75,116),(64,126,71,117),(65,127,72,118),(76,96,90,110),(77,97,86,106),(78,98,87,107),(79,99,88,108),(80,100,89,109),(81,101,93,113),(82,102,94,114),(83,103,95,115),(84,104,91,111),(85,105,92,112)], [(1,30),(2,26),(3,27),(4,28),(5,29),(21,33),(22,34),(23,35),(24,31),(25,32),(36,43),(37,44),(38,45),(39,41),(40,42),(46,51),(47,52),(48,53),(49,54),(50,55),(76,95),(77,91),(78,92),(79,93),(80,94),(81,88),(82,89),(83,90),(84,86),(85,87),(96,103),(97,104),(98,105),(99,101),(100,102),(106,111),(107,112),(108,113),(109,114),(110,115),(116,130),(117,126),(118,127),(119,128),(120,129),(121,133),(122,134),(123,135),(124,131),(125,132),(136,155),(137,151),(138,152),(139,153),(140,154),(141,148),(142,149),(143,150),(144,146),(145,147)])

Matrix representation G ⊆ GL5(𝔽41)

370000
01000
00100
00010
00001
,
10000
09000
003200
000400
000040
,
400000
00900
032000
00010
00001
,
400000
040000
004000
00062
000235
,
400000
040000
00100
000400
00061

G:=sub<GL(5,GF(41))| [37,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,9,0,0,0,0,0,32,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,0,32,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,1],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,6,2,0,0,0,2,35],[40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,40,6,0,0,0,0,1] >;

125 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4H4I···4O5A5B5C5D10A···10L10M···10AB10AC···10AJ20A···20AF20AG···20BH
order12222222224···44···4555510···1010···1010···1020···2020···20
size11112222442···24···411111···12···24···42···24···4

125 irreducible representations

dim1111111111111111222244
type+++++++++-
imageC1C2C2C2C2C2C2C2C5C10C10C10C10C10C10C10D4C4○D4C5×D4C5×C4○D42- (1+4)C5×2- (1+4)
kernelC5×D46D4C10×C4⋊C4D4×C20C5×C4⋊D4C5×C22⋊Q8C5×C22.D4C5×C4⋊Q8C10×C4○D4D46D4C2×C4⋊C4C4×D4C4⋊D4C22⋊Q8C22.D4C4⋊Q8C2×C4○D4C5×D4C20D4C4C10C2
# reps1222241248888164844161614

In GAP, Magma, Sage, TeX

C_5\times D_4\rtimes_6D_4
% in TeX

G:=Group("C5xD4:6D4");
// GroupNames label

G:=SmallGroup(320,1549);
// by ID

G=gap.SmallGroup(320,1549);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,560,1149,3446,436,1242]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^4=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽