Copied to
clipboard

?

G = C5×Q86D4order 320 = 26·5

Direct product of C5 and Q86D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×Q86D4, C10.1622+ (1+4), Q86(C5×D4), (C5×Q8)⋊24D4, (D4×C20)⋊47C2, (C4×D4)⋊18C10, C41D48C10, (Q8×C20)⋊33C2, (C4×Q8)⋊13C10, C4.44(D4×C10), C2019(C4○D4), C4⋊D414C10, C20.405(C2×D4), C42.45(C2×C10), (C2×C20).677C23, (C4×C20).286C22, (C2×C10).370C24, C10.198(C22×D4), (D4×C10).220C22, C22.44(C23×C10), C23.17(C22×C10), (Q8×C10).286C22, C2.14(C5×2+ (1+4)), (C22×C10).101C23, (C22×C20).456C22, C43(C5×C4○D4), C2.22(D4×C2×C10), (C2×C4○D4)⋊9C10, (C10×C4○D4)⋊25C2, (C5×C41D4)⋊19C2, (C5×C4⋊D4)⋊41C2, C4⋊C4.72(C2×C10), C2.23(C10×C4○D4), (C2×D4).68(C2×C10), C10.242(C2×C4○D4), (C2×Q8).74(C2×C10), (C5×C4⋊C4).398C22, C22⋊C4.21(C2×C10), (C22×C4).68(C2×C10), (C2×C4).137(C22×C10), (C5×C22⋊C4).154C22, SmallGroup(320,1552)

Series: Derived Chief Lower central Upper central

C1C22 — C5×Q86D4
C1C2C22C2×C10C22×C10D4×C10C5×C4⋊D4 — C5×Q86D4
C1C22 — C5×Q86D4
C1C2×C10 — C5×Q86D4

Subgroups: 506 in 312 conjugacy classes, 166 normal (20 characteristic)
C1, C2 [×3], C2 [×6], C4 [×8], C4 [×5], C22, C22 [×18], C5, C2×C4, C2×C4 [×8], C2×C4 [×12], D4 [×24], Q8 [×4], C23 [×6], C10 [×3], C10 [×6], C42 [×3], C22⋊C4 [×6], C4⋊C4, C4⋊C4 [×3], C22×C4 [×6], C2×D4 [×15], C2×Q8, C4○D4 [×8], C20 [×8], C20 [×5], C2×C10, C2×C10 [×18], C4×D4 [×3], C4×Q8, C4⋊D4 [×6], C41D4 [×3], C2×C4○D4 [×2], C2×C20, C2×C20 [×8], C2×C20 [×12], C5×D4 [×24], C5×Q8 [×4], C22×C10 [×6], Q86D4, C4×C20 [×3], C5×C22⋊C4 [×6], C5×C4⋊C4, C5×C4⋊C4 [×3], C22×C20 [×6], D4×C10 [×15], Q8×C10, C5×C4○D4 [×8], D4×C20 [×3], Q8×C20, C5×C4⋊D4 [×6], C5×C41D4 [×3], C10×C4○D4 [×2], C5×Q86D4

Quotients:
C1, C2 [×15], C22 [×35], C5, D4 [×4], C23 [×15], C10 [×15], C2×D4 [×6], C4○D4 [×2], C24, C2×C10 [×35], C22×D4, C2×C4○D4, 2+ (1+4), C5×D4 [×4], C22×C10 [×15], Q86D4, D4×C10 [×6], C5×C4○D4 [×2], C23×C10, D4×C2×C10, C10×C4○D4, C5×2+ (1+4), C5×Q86D4

Generators and relations
 G = < a,b,c,d,e | a5=b4=d4=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=dbd-1=b-1, be=eb, dcd-1=ece=b2c, ede=d-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 43 35 50)(2 44 31 46)(3 45 32 47)(4 41 33 48)(5 42 34 49)(6 136 16 155)(7 137 17 151)(8 138 18 152)(9 139 19 153)(10 140 20 154)(11 143 156 150)(12 144 157 146)(13 145 158 147)(14 141 159 148)(15 142 160 149)(21 39 28 53)(22 40 29 54)(23 36 30 55)(24 37 26 51)(25 38 27 52)(56 83 75 90)(57 84 71 86)(58 85 72 87)(59 81 73 88)(60 82 74 89)(61 79 68 93)(62 80 69 94)(63 76 70 95)(64 77 66 91)(65 78 67 92)(96 123 115 130)(97 124 111 126)(98 125 112 127)(99 121 113 128)(100 122 114 129)(101 119 108 133)(102 120 109 134)(103 116 110 135)(104 117 106 131)(105 118 107 132)
(1 90 35 83)(2 86 31 84)(3 87 32 85)(4 88 33 81)(5 89 34 82)(6 96 16 115)(7 97 17 111)(8 98 18 112)(9 99 19 113)(10 100 20 114)(11 103 156 110)(12 104 157 106)(13 105 158 107)(14 101 159 108)(15 102 160 109)(21 93 28 79)(22 94 29 80)(23 95 30 76)(24 91 26 77)(25 92 27 78)(36 70 55 63)(37 66 51 64)(38 67 52 65)(39 68 53 61)(40 69 54 62)(41 73 48 59)(42 74 49 60)(43 75 50 56)(44 71 46 57)(45 72 47 58)(116 143 135 150)(117 144 131 146)(118 145 132 147)(119 141 133 148)(120 142 134 149)(121 139 128 153)(122 140 129 154)(123 136 130 155)(124 137 126 151)(125 138 127 152)
(1 135 23 130)(2 131 24 126)(3 132 25 127)(4 133 21 128)(5 134 22 129)(6 56 11 63)(7 57 12 64)(8 58 13 65)(9 59 14 61)(10 60 15 62)(16 75 156 70)(17 71 157 66)(18 72 158 67)(19 73 159 68)(20 74 160 69)(26 124 31 117)(27 125 32 118)(28 121 33 119)(29 122 34 120)(30 123 35 116)(36 115 43 110)(37 111 44 106)(38 112 45 107)(39 113 41 108)(40 114 42 109)(46 104 51 97)(47 105 52 98)(48 101 53 99)(49 102 54 100)(50 103 55 96)(76 155 83 150)(77 151 84 146)(78 152 85 147)(79 153 81 148)(80 154 82 149)(86 144 91 137)(87 145 92 138)(88 141 93 139)(89 142 94 140)(90 143 95 136)
(1 96)(2 97)(3 98)(4 99)(5 100)(6 90)(7 86)(8 87)(9 88)(10 89)(11 95)(12 91)(13 92)(14 93)(15 94)(16 83)(17 84)(18 85)(19 81)(20 82)(21 101)(22 102)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 109)(30 110)(31 111)(32 112)(33 113)(34 114)(35 115)(36 116)(37 117)(38 118)(39 119)(40 120)(41 121)(42 122)(43 123)(44 124)(45 125)(46 126)(47 127)(48 128)(49 129)(50 130)(51 131)(52 132)(53 133)(54 134)(55 135)(56 136)(57 137)(58 138)(59 139)(60 140)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 150)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,43,35,50)(2,44,31,46)(3,45,32,47)(4,41,33,48)(5,42,34,49)(6,136,16,155)(7,137,17,151)(8,138,18,152)(9,139,19,153)(10,140,20,154)(11,143,156,150)(12,144,157,146)(13,145,158,147)(14,141,159,148)(15,142,160,149)(21,39,28,53)(22,40,29,54)(23,36,30,55)(24,37,26,51)(25,38,27,52)(56,83,75,90)(57,84,71,86)(58,85,72,87)(59,81,73,88)(60,82,74,89)(61,79,68,93)(62,80,69,94)(63,76,70,95)(64,77,66,91)(65,78,67,92)(96,123,115,130)(97,124,111,126)(98,125,112,127)(99,121,113,128)(100,122,114,129)(101,119,108,133)(102,120,109,134)(103,116,110,135)(104,117,106,131)(105,118,107,132), (1,90,35,83)(2,86,31,84)(3,87,32,85)(4,88,33,81)(5,89,34,82)(6,96,16,115)(7,97,17,111)(8,98,18,112)(9,99,19,113)(10,100,20,114)(11,103,156,110)(12,104,157,106)(13,105,158,107)(14,101,159,108)(15,102,160,109)(21,93,28,79)(22,94,29,80)(23,95,30,76)(24,91,26,77)(25,92,27,78)(36,70,55,63)(37,66,51,64)(38,67,52,65)(39,68,53,61)(40,69,54,62)(41,73,48,59)(42,74,49,60)(43,75,50,56)(44,71,46,57)(45,72,47,58)(116,143,135,150)(117,144,131,146)(118,145,132,147)(119,141,133,148)(120,142,134,149)(121,139,128,153)(122,140,129,154)(123,136,130,155)(124,137,126,151)(125,138,127,152), (1,135,23,130)(2,131,24,126)(3,132,25,127)(4,133,21,128)(5,134,22,129)(6,56,11,63)(7,57,12,64)(8,58,13,65)(9,59,14,61)(10,60,15,62)(16,75,156,70)(17,71,157,66)(18,72,158,67)(19,73,159,68)(20,74,160,69)(26,124,31,117)(27,125,32,118)(28,121,33,119)(29,122,34,120)(30,123,35,116)(36,115,43,110)(37,111,44,106)(38,112,45,107)(39,113,41,108)(40,114,42,109)(46,104,51,97)(47,105,52,98)(48,101,53,99)(49,102,54,100)(50,103,55,96)(76,155,83,150)(77,151,84,146)(78,152,85,147)(79,153,81,148)(80,154,82,149)(86,144,91,137)(87,145,92,138)(88,141,93,139)(89,142,94,140)(90,143,95,136), (1,96)(2,97)(3,98)(4,99)(5,100)(6,90)(7,86)(8,87)(9,88)(10,89)(11,95)(12,91)(13,92)(14,93)(15,94)(16,83)(17,84)(18,85)(19,81)(20,82)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,43,35,50)(2,44,31,46)(3,45,32,47)(4,41,33,48)(5,42,34,49)(6,136,16,155)(7,137,17,151)(8,138,18,152)(9,139,19,153)(10,140,20,154)(11,143,156,150)(12,144,157,146)(13,145,158,147)(14,141,159,148)(15,142,160,149)(21,39,28,53)(22,40,29,54)(23,36,30,55)(24,37,26,51)(25,38,27,52)(56,83,75,90)(57,84,71,86)(58,85,72,87)(59,81,73,88)(60,82,74,89)(61,79,68,93)(62,80,69,94)(63,76,70,95)(64,77,66,91)(65,78,67,92)(96,123,115,130)(97,124,111,126)(98,125,112,127)(99,121,113,128)(100,122,114,129)(101,119,108,133)(102,120,109,134)(103,116,110,135)(104,117,106,131)(105,118,107,132), (1,90,35,83)(2,86,31,84)(3,87,32,85)(4,88,33,81)(5,89,34,82)(6,96,16,115)(7,97,17,111)(8,98,18,112)(9,99,19,113)(10,100,20,114)(11,103,156,110)(12,104,157,106)(13,105,158,107)(14,101,159,108)(15,102,160,109)(21,93,28,79)(22,94,29,80)(23,95,30,76)(24,91,26,77)(25,92,27,78)(36,70,55,63)(37,66,51,64)(38,67,52,65)(39,68,53,61)(40,69,54,62)(41,73,48,59)(42,74,49,60)(43,75,50,56)(44,71,46,57)(45,72,47,58)(116,143,135,150)(117,144,131,146)(118,145,132,147)(119,141,133,148)(120,142,134,149)(121,139,128,153)(122,140,129,154)(123,136,130,155)(124,137,126,151)(125,138,127,152), (1,135,23,130)(2,131,24,126)(3,132,25,127)(4,133,21,128)(5,134,22,129)(6,56,11,63)(7,57,12,64)(8,58,13,65)(9,59,14,61)(10,60,15,62)(16,75,156,70)(17,71,157,66)(18,72,158,67)(19,73,159,68)(20,74,160,69)(26,124,31,117)(27,125,32,118)(28,121,33,119)(29,122,34,120)(30,123,35,116)(36,115,43,110)(37,111,44,106)(38,112,45,107)(39,113,41,108)(40,114,42,109)(46,104,51,97)(47,105,52,98)(48,101,53,99)(49,102,54,100)(50,103,55,96)(76,155,83,150)(77,151,84,146)(78,152,85,147)(79,153,81,148)(80,154,82,149)(86,144,91,137)(87,145,92,138)(88,141,93,139)(89,142,94,140)(90,143,95,136), (1,96)(2,97)(3,98)(4,99)(5,100)(6,90)(7,86)(8,87)(9,88)(10,89)(11,95)(12,91)(13,92)(14,93)(15,94)(16,83)(17,84)(18,85)(19,81)(20,82)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160) );

G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,43,35,50),(2,44,31,46),(3,45,32,47),(4,41,33,48),(5,42,34,49),(6,136,16,155),(7,137,17,151),(8,138,18,152),(9,139,19,153),(10,140,20,154),(11,143,156,150),(12,144,157,146),(13,145,158,147),(14,141,159,148),(15,142,160,149),(21,39,28,53),(22,40,29,54),(23,36,30,55),(24,37,26,51),(25,38,27,52),(56,83,75,90),(57,84,71,86),(58,85,72,87),(59,81,73,88),(60,82,74,89),(61,79,68,93),(62,80,69,94),(63,76,70,95),(64,77,66,91),(65,78,67,92),(96,123,115,130),(97,124,111,126),(98,125,112,127),(99,121,113,128),(100,122,114,129),(101,119,108,133),(102,120,109,134),(103,116,110,135),(104,117,106,131),(105,118,107,132)], [(1,90,35,83),(2,86,31,84),(3,87,32,85),(4,88,33,81),(5,89,34,82),(6,96,16,115),(7,97,17,111),(8,98,18,112),(9,99,19,113),(10,100,20,114),(11,103,156,110),(12,104,157,106),(13,105,158,107),(14,101,159,108),(15,102,160,109),(21,93,28,79),(22,94,29,80),(23,95,30,76),(24,91,26,77),(25,92,27,78),(36,70,55,63),(37,66,51,64),(38,67,52,65),(39,68,53,61),(40,69,54,62),(41,73,48,59),(42,74,49,60),(43,75,50,56),(44,71,46,57),(45,72,47,58),(116,143,135,150),(117,144,131,146),(118,145,132,147),(119,141,133,148),(120,142,134,149),(121,139,128,153),(122,140,129,154),(123,136,130,155),(124,137,126,151),(125,138,127,152)], [(1,135,23,130),(2,131,24,126),(3,132,25,127),(4,133,21,128),(5,134,22,129),(6,56,11,63),(7,57,12,64),(8,58,13,65),(9,59,14,61),(10,60,15,62),(16,75,156,70),(17,71,157,66),(18,72,158,67),(19,73,159,68),(20,74,160,69),(26,124,31,117),(27,125,32,118),(28,121,33,119),(29,122,34,120),(30,123,35,116),(36,115,43,110),(37,111,44,106),(38,112,45,107),(39,113,41,108),(40,114,42,109),(46,104,51,97),(47,105,52,98),(48,101,53,99),(49,102,54,100),(50,103,55,96),(76,155,83,150),(77,151,84,146),(78,152,85,147),(79,153,81,148),(80,154,82,149),(86,144,91,137),(87,145,92,138),(88,141,93,139),(89,142,94,140),(90,143,95,136)], [(1,96),(2,97),(3,98),(4,99),(5,100),(6,90),(7,86),(8,87),(9,88),(10,89),(11,95),(12,91),(13,92),(14,93),(15,94),(16,83),(17,84),(18,85),(19,81),(20,82),(21,101),(22,102),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,109),(30,110),(31,111),(32,112),(33,113),(34,114),(35,115),(36,116),(37,117),(38,118),(39,119),(40,120),(41,121),(42,122),(43,123),(44,124),(45,125),(46,126),(47,127),(48,128),(49,129),(50,130),(51,131),(52,132),(53,133),(54,134),(55,135),(56,136),(57,137),(58,138),(59,139),(60,140),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,150),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160)])

Matrix representation G ⊆ GL4(𝔽41) generated by

16000
01600
00180
00018
,
40000
04000
0001
00400
,
40000
04000
0009
0090
,
53900
133600
0090
00032
,
36200
29500
00032
0090
G:=sub<GL(4,GF(41))| [16,0,0,0,0,16,0,0,0,0,18,0,0,0,0,18],[40,0,0,0,0,40,0,0,0,0,0,40,0,0,1,0],[40,0,0,0,0,40,0,0,0,0,0,9,0,0,9,0],[5,13,0,0,39,36,0,0,0,0,9,0,0,0,0,32],[36,29,0,0,2,5,0,0,0,0,0,9,0,0,32,0] >;

125 conjugacy classes

class 1 2A2B2C2D···2I4A···4L4M4N4O5A5B5C5D10A···10L10M···10AJ20A···20AV20AW···20BH
order12222···24···4444555510···1010···1020···2020···20
size11114···42···244411111···14···42···24···4

125 irreducible representations

dim111111111111222244
type++++++++
imageC1C2C2C2C2C2C5C10C10C10C10C10D4C4○D4C5×D4C5×C4○D42+ (1+4)C5×2+ (1+4)
kernelC5×Q86D4D4×C20Q8×C20C5×C4⋊D4C5×C41D4C10×C4○D4Q86D4C4×D4C4×Q8C4⋊D4C41D4C2×C4○D4C5×Q8C20Q8C4C10C2
# reps13163241242412844161614

In GAP, Magma, Sage, TeX

C_5\times Q_8\rtimes_6D_4
% in TeX

G:=Group("C5xQ8:6D4");
// GroupNames label

G:=SmallGroup(320,1552);
// by ID

G=gap.SmallGroup(320,1552);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,568,3446,436,1242,304]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^4=d^4=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽