extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C10).1(C2×Q8) = D5×C8.C4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C10 | 80 | 4 | (C2xC10).1(C2xQ8) | 320,519 |
(C2×C10).2(C2×Q8) = M4(2).25D10 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C10 | 80 | 4 | (C2xC10).2(C2xQ8) | 320,520 |
(C2×C10).3(C2×Q8) = D4⋊5Dic10 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C10 | 160 | | (C2xC10).3(C2xQ8) | 320,1211 |
(C2×C10).4(C2×Q8) = D4⋊6Dic10 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C10 | 160 | | (C2xC10).4(C2xQ8) | 320,1215 |
(C2×C10).5(C2×Q8) = (Q8×Dic5)⋊C2 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C10 | 160 | | (C2xC10).5(C2xQ8) | 320,1294 |
(C2×C10).6(C2×Q8) = C10.502+ 1+4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C10 | 160 | | (C2xC10).6(C2xQ8) | 320,1295 |
(C2×C10).7(C2×Q8) = C10.512+ 1+4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C10 | 80 | | (C2xC10).7(C2xQ8) | 320,1306 |
(C2×C10).8(C2×Q8) = C10.1182+ 1+4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C10 | 160 | | (C2xC10).8(C2xQ8) | 320,1307 |
(C2×C10).9(C2×Q8) = C10.522+ 1+4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C10 | 160 | | (C2xC10).9(C2xQ8) | 320,1308 |
(C2×C10).10(C2×Q8) = C2×C20.53D4 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C10 | 160 | | (C2xC10).10(C2xQ8) | 320,750 |
(C2×C10).11(C2×Q8) = C23.Dic10 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C10 | 80 | 4 | (C2xC10).11(C2xQ8) | 320,751 |
(C2×C10).12(C2×Q8) = C42.88D10 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C10 | 160 | | (C2xC10).12(C2xQ8) | 320,1189 |
(C2×C10).13(C2×Q8) = C42.90D10 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C10 | 160 | | (C2xC10).13(C2xQ8) | 320,1191 |
(C2×C10).14(C2×Q8) = C10×C8.C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).14(C2xQ8) | 320,930 |
(C2×C10).15(C2×Q8) = C5×M4(2).C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 80 | 4 | (C2xC10).15(C2xQ8) | 320,931 |
(C2×C10).16(C2×Q8) = C5×C23.37C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).16(C2xQ8) | 320,1535 |
(C2×C10).17(C2×Q8) = C5×C23⋊2Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).17(C2xQ8) | 320,1545 |
(C2×C10).18(C2×Q8) = C5×C23.41C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).18(C2xQ8) | 320,1546 |
(C2×C10).19(C2×Q8) = C4⋊Dic5⋊15C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).19(C2xQ8) | 320,281 |
(C2×C10).20(C2×Q8) = C10.52(C4×D4) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).20(C2xQ8) | 320,282 |
(C2×C10).21(C2×Q8) = (C2×C4).Dic10 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).21(C2xQ8) | 320,287 |
(C2×C10).22(C2×Q8) = C10.(C4⋊Q8) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).22(C2xQ8) | 320,288 |
(C2×C10).23(C2×Q8) = C20⋊7(C4⋊C4) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).23(C2xQ8) | 320,555 |
(C2×C10).24(C2×Q8) = (C2×C20)⋊10Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).24(C2xQ8) | 320,556 |
(C2×C10).25(C2×Q8) = C4×C10.D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).25(C2xQ8) | 320,558 |
(C2×C10).26(C2×Q8) = C10.92(C4×D4) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).26(C2xQ8) | 320,560 |
(C2×C10).27(C2×Q8) = C4×C4⋊Dic5 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).27(C2xQ8) | 320,561 |
(C2×C10).28(C2×Q8) = C42⋊8Dic5 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).28(C2xQ8) | 320,562 |
(C2×C10).29(C2×Q8) = C42⋊9Dic5 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).29(C2xQ8) | 320,563 |
(C2×C10).30(C2×Q8) = C24.44D10 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).30(C2xQ8) | 320,569 |
(C2×C10).31(C2×Q8) = C24.46D10 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).31(C2xQ8) | 320,573 |
(C2×C10).32(C2×Q8) = C23⋊Dic10 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).32(C2xQ8) | 320,574 |
(C2×C10).33(C2×Q8) = C24.6D10 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).33(C2xQ8) | 320,575 |
(C2×C10).34(C2×Q8) = C24.7D10 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).34(C2xQ8) | 320,576 |
(C2×C10).35(C2×Q8) = C24.47D10 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).35(C2xQ8) | 320,577 |
(C2×C10).36(C2×Q8) = C20.48(C4⋊C4) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).36(C2xQ8) | 320,604 |
(C2×C10).37(C2×Q8) = (C2×C20).54D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).37(C2xQ8) | 320,611 |
(C2×C10).38(C2×Q8) = C20⋊6(C4⋊C4) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).38(C2xQ8) | 320,612 |
(C2×C10).39(C2×Q8) = (C2×C20).55D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).39(C2xQ8) | 320,613 |
(C2×C10).40(C2×Q8) = C2×C40.6C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).40(C2xQ8) | 320,734 |
(C2×C10).41(C2×Q8) = M4(2).Dic5 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 80 | 4 | (C2xC10).41(C2xQ8) | 320,752 |
(C2×C10).42(C2×Q8) = C2×C10.10C42 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).42(C2xQ8) | 320,835 |
(C2×C10).43(C2×Q8) = C24.62D10 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).43(C2xQ8) | 320,837 |
(C2×C10).44(C2×Q8) = C24.64D10 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).44(C2xQ8) | 320,839 |
(C2×C10).45(C2×Q8) = C2×C4×Dic10 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).45(C2xQ8) | 320,1139 |
(C2×C10).46(C2×Q8) = C2×C20⋊2Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).46(C2xQ8) | 320,1140 |
(C2×C10).47(C2×Q8) = C2×C20.6Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).47(C2xQ8) | 320,1141 |
(C2×C10).48(C2×Q8) = C42.274D10 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).48(C2xQ8) | 320,1142 |
(C2×C10).49(C2×Q8) = C23⋊2Dic10 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).49(C2xQ8) | 320,1155 |
(C2×C10).50(C2×Q8) = C2×C20⋊Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).50(C2xQ8) | 320,1169 |
(C2×C10).51(C2×Q8) = C2×C4.Dic10 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).51(C2xQ8) | 320,1171 |
(C2×C10).52(C2×Q8) = C10.12- 1+4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).52(C2xQ8) | 320,1172 |
(C2×C10).53(C2×Q8) = C22×C10.D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).53(C2xQ8) | 320,1455 |
(C2×C10).54(C2×Q8) = C22×C4⋊Dic5 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).54(C2xQ8) | 320,1457 |
(C2×C10).55(C2×Q8) = C5×D4⋊3Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).55(C2xQ8) | 320,1556 |
(C2×C10).56(C2×Q8) = (C2×C20)⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).56(C2xQ8) | 320,273 |
(C2×C10).57(C2×Q8) = C10.49(C4×D4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).57(C2xQ8) | 320,274 |
(C2×C10).58(C2×Q8) = Dic5⋊2C42 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).58(C2xQ8) | 320,276 |
(C2×C10).59(C2×Q8) = C5⋊2(C42⋊8C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).59(C2xQ8) | 320,277 |
(C2×C10).60(C2×Q8) = C10.51(C4×D4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).60(C2xQ8) | 320,279 |
(C2×C10).61(C2×Q8) = C2.(C4×D20) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).61(C2xQ8) | 320,280 |
(C2×C10).62(C2×Q8) = (C2×Dic5)⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).62(C2xQ8) | 320,283 |
(C2×C10).63(C2×Q8) = C2.(C20⋊Q8) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).63(C2xQ8) | 320,284 |
(C2×C10).64(C2×Q8) = (C2×Dic5).Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).64(C2xQ8) | 320,285 |
(C2×C10).65(C2×Q8) = (C2×C20).28D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).65(C2xQ8) | 320,286 |
(C2×C10).66(C2×Q8) = D5×C2.C42 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).66(C2xQ8) | 320,290 |
(C2×C10).67(C2×Q8) = D10⋊2(C4⋊C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).67(C2xQ8) | 320,294 |
(C2×C10).68(C2×Q8) = D10⋊3(C4⋊C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).68(C2xQ8) | 320,295 |
(C2×C10).69(C2×Q8) = (C2×C4).20D20 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).69(C2xQ8) | 320,300 |
(C2×C10).70(C2×Q8) = (C22×D5).Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).70(C2xQ8) | 320,303 |
(C2×C10).71(C2×Q8) = (C2×C20).33D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).71(C2xQ8) | 320,304 |
(C2×C10).72(C2×Q8) = C10.96(C4×D4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).72(C2xQ8) | 320,599 |
(C2×C10).73(C2×Q8) = C20⋊4(C4⋊C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).73(C2xQ8) | 320,600 |
(C2×C10).74(C2×Q8) = (C2×Dic5)⋊6Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).74(C2xQ8) | 320,601 |
(C2×C10).75(C2×Q8) = C4⋊C4×Dic5 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).75(C2xQ8) | 320,602 |
(C2×C10).76(C2×Q8) = C20⋊5(C4⋊C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).76(C2xQ8) | 320,603 |
(C2×C10).77(C2×Q8) = C10.97(C4×D4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).77(C2xQ8) | 320,605 |
(C2×C10).78(C2×Q8) = (C2×C4)⋊Dic10 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).78(C2xQ8) | 320,606 |
(C2×C10).79(C2×Q8) = (C2×C20).287D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).79(C2xQ8) | 320,607 |
(C2×C10).80(C2×Q8) = C4⋊C4⋊5Dic5 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).80(C2xQ8) | 320,608 |
(C2×C10).81(C2×Q8) = (C2×C20).288D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).81(C2xQ8) | 320,609 |
(C2×C10).82(C2×Q8) = (C2×C20).53D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).82(C2xQ8) | 320,610 |
(C2×C10).83(C2×Q8) = D10⋊4(C4⋊C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).83(C2xQ8) | 320,614 |
(C2×C10).84(C2×Q8) = D10⋊5(C4⋊C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).84(C2xQ8) | 320,616 |
(C2×C10).85(C2×Q8) = (C2×C20).289D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).85(C2xQ8) | 320,619 |
(C2×C10).86(C2×Q8) = (C2×C20).56D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).86(C2xQ8) | 320,621 |
(C2×C10).87(C2×Q8) = C10.C22≀C2 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).87(C2xQ8) | 320,856 |
(C2×C10).88(C2×Q8) = (Q8×C10)⋊17C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).88(C2xQ8) | 320,857 |
(C2×C10).89(C2×Q8) = (C22×D5)⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).89(C2xQ8) | 320,858 |
(C2×C10).90(C2×Q8) = C2×Dic5⋊3Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).90(C2xQ8) | 320,1168 |
(C2×C10).91(C2×Q8) = C2×Dic5.Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).91(C2xQ8) | 320,1170 |
(C2×C10).92(C2×Q8) = C2×D5×C4⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).92(C2xQ8) | 320,1173 |
(C2×C10).93(C2×Q8) = C2×D10⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).93(C2xQ8) | 320,1180 |
(C2×C10).94(C2×Q8) = C2×D10⋊2Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).94(C2xQ8) | 320,1181 |
(C2×C10).95(C2×Q8) = C10.102+ 1+4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).95(C2xQ8) | 320,1183 |
(C2×C10).96(C2×Q8) = C2×Dic5⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).96(C2xQ8) | 320,1482 |
(C2×C10).97(C2×Q8) = C2×Q8×Dic5 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 320 | | (C2xC10).97(C2xQ8) | 320,1483 |
(C2×C10).98(C2×Q8) = C2×D10⋊3Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C10 | 160 | | (C2xC10).98(C2xQ8) | 320,1485 |
(C2×C10).99(C2×Q8) = C10×C2.C42 | central extension (φ=1) | 320 | | (C2xC10).99(C2xQ8) | 320,876 |
(C2×C10).100(C2×Q8) = C4⋊C4×C20 | central extension (φ=1) | 320 | | (C2xC10).100(C2xQ8) | 320,879 |
(C2×C10).101(C2×Q8) = C5×C23.7Q8 | central extension (φ=1) | 160 | | (C2xC10).101(C2xQ8) | 320,881 |
(C2×C10).102(C2×Q8) = C5×C42⋊8C4 | central extension (φ=1) | 320 | | (C2xC10).102(C2xQ8) | 320,883 |
(C2×C10).103(C2×Q8) = C5×C42⋊9C4 | central extension (φ=1) | 320 | | (C2xC10).103(C2xQ8) | 320,885 |
(C2×C10).104(C2×Q8) = C5×C23.8Q8 | central extension (φ=1) | 160 | | (C2xC10).104(C2xQ8) | 320,886 |
(C2×C10).105(C2×Q8) = C5×C23.63C23 | central extension (φ=1) | 320 | | (C2xC10).105(C2xQ8) | 320,888 |
(C2×C10).106(C2×Q8) = C5×C23.65C23 | central extension (φ=1) | 320 | | (C2xC10).106(C2xQ8) | 320,890 |
(C2×C10).107(C2×Q8) = C5×C23.67C23 | central extension (φ=1) | 320 | | (C2xC10).107(C2xQ8) | 320,892 |
(C2×C10).108(C2×Q8) = C5×C23⋊Q8 | central extension (φ=1) | 160 | | (C2xC10).108(C2xQ8) | 320,894 |
(C2×C10).109(C2×Q8) = C5×C23.78C23 | central extension (φ=1) | 320 | | (C2xC10).109(C2xQ8) | 320,896 |
(C2×C10).110(C2×Q8) = C5×C23.Q8 | central extension (φ=1) | 160 | | (C2xC10).110(C2xQ8) | 320,897 |
(C2×C10).111(C2×Q8) = C5×C23.81C23 | central extension (φ=1) | 320 | | (C2xC10).111(C2xQ8) | 320,899 |
(C2×C10).112(C2×Q8) = C5×C23.4Q8 | central extension (φ=1) | 160 | | (C2xC10).112(C2xQ8) | 320,900 |
(C2×C10).113(C2×Q8) = C5×C23.83C23 | central extension (φ=1) | 320 | | (C2xC10).113(C2xQ8) | 320,901 |
(C2×C10).114(C2×Q8) = C4⋊C4×C2×C10 | central extension (φ=1) | 320 | | (C2xC10).114(C2xQ8) | 320,1515 |
(C2×C10).115(C2×Q8) = Q8×C2×C20 | central extension (φ=1) | 320 | | (C2xC10).115(C2xQ8) | 320,1518 |
(C2×C10).116(C2×Q8) = C10×C42.C2 | central extension (φ=1) | 320 | | (C2xC10).116(C2xQ8) | 320,1529 |
(C2×C10).117(C2×Q8) = C10×C4⋊Q8 | central extension (φ=1) | 320 | | (C2xC10).117(C2xQ8) | 320,1533 |