extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC10).1(C2xQ8) = D5xC8.C4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC10 | 80 | 4 | (C2xC10).1(C2xQ8) | 320,519 |
(C2xC10).2(C2xQ8) = M4(2).25D10 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC10 | 80 | 4 | (C2xC10).2(C2xQ8) | 320,520 |
(C2xC10).3(C2xQ8) = D4:5Dic10 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC10 | 160 | | (C2xC10).3(C2xQ8) | 320,1211 |
(C2xC10).4(C2xQ8) = D4:6Dic10 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC10 | 160 | | (C2xC10).4(C2xQ8) | 320,1215 |
(C2xC10).5(C2xQ8) = (Q8xDic5):C2 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC10 | 160 | | (C2xC10).5(C2xQ8) | 320,1294 |
(C2xC10).6(C2xQ8) = C10.502+ 1+4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC10 | 160 | | (C2xC10).6(C2xQ8) | 320,1295 |
(C2xC10).7(C2xQ8) = C10.512+ 1+4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC10 | 80 | | (C2xC10).7(C2xQ8) | 320,1306 |
(C2xC10).8(C2xQ8) = C10.1182+ 1+4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC10 | 160 | | (C2xC10).8(C2xQ8) | 320,1307 |
(C2xC10).9(C2xQ8) = C10.522+ 1+4 | φ: C2xQ8/C4 → C22 ⊆ Aut C2xC10 | 160 | | (C2xC10).9(C2xQ8) | 320,1308 |
(C2xC10).10(C2xQ8) = C2xC20.53D4 | φ: C2xQ8/C22 → C22 ⊆ Aut C2xC10 | 160 | | (C2xC10).10(C2xQ8) | 320,750 |
(C2xC10).11(C2xQ8) = C23.Dic10 | φ: C2xQ8/C22 → C22 ⊆ Aut C2xC10 | 80 | 4 | (C2xC10).11(C2xQ8) | 320,751 |
(C2xC10).12(C2xQ8) = C42.88D10 | φ: C2xQ8/C22 → C22 ⊆ Aut C2xC10 | 160 | | (C2xC10).12(C2xQ8) | 320,1189 |
(C2xC10).13(C2xQ8) = C42.90D10 | φ: C2xQ8/C22 → C22 ⊆ Aut C2xC10 | 160 | | (C2xC10).13(C2xQ8) | 320,1191 |
(C2xC10).14(C2xQ8) = C10xC8.C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).14(C2xQ8) | 320,930 |
(C2xC10).15(C2xQ8) = C5xM4(2).C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 80 | 4 | (C2xC10).15(C2xQ8) | 320,931 |
(C2xC10).16(C2xQ8) = C5xC23.37C23 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).16(C2xQ8) | 320,1535 |
(C2xC10).17(C2xQ8) = C5xC23:2Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).17(C2xQ8) | 320,1545 |
(C2xC10).18(C2xQ8) = C5xC23.41C23 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).18(C2xQ8) | 320,1546 |
(C2xC10).19(C2xQ8) = C4:Dic5:15C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).19(C2xQ8) | 320,281 |
(C2xC10).20(C2xQ8) = C10.52(C4xD4) | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).20(C2xQ8) | 320,282 |
(C2xC10).21(C2xQ8) = (C2xC4).Dic10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).21(C2xQ8) | 320,287 |
(C2xC10).22(C2xQ8) = C10.(C4:Q8) | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).22(C2xQ8) | 320,288 |
(C2xC10).23(C2xQ8) = C20:7(C4:C4) | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).23(C2xQ8) | 320,555 |
(C2xC10).24(C2xQ8) = (C2xC20):10Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).24(C2xQ8) | 320,556 |
(C2xC10).25(C2xQ8) = C4xC10.D4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).25(C2xQ8) | 320,558 |
(C2xC10).26(C2xQ8) = C10.92(C4xD4) | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).26(C2xQ8) | 320,560 |
(C2xC10).27(C2xQ8) = C4xC4:Dic5 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).27(C2xQ8) | 320,561 |
(C2xC10).28(C2xQ8) = C42:8Dic5 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).28(C2xQ8) | 320,562 |
(C2xC10).29(C2xQ8) = C42:9Dic5 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).29(C2xQ8) | 320,563 |
(C2xC10).30(C2xQ8) = C24.44D10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).30(C2xQ8) | 320,569 |
(C2xC10).31(C2xQ8) = C24.46D10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).31(C2xQ8) | 320,573 |
(C2xC10).32(C2xQ8) = C23:Dic10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).32(C2xQ8) | 320,574 |
(C2xC10).33(C2xQ8) = C24.6D10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).33(C2xQ8) | 320,575 |
(C2xC10).34(C2xQ8) = C24.7D10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).34(C2xQ8) | 320,576 |
(C2xC10).35(C2xQ8) = C24.47D10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).35(C2xQ8) | 320,577 |
(C2xC10).36(C2xQ8) = C20.48(C4:C4) | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).36(C2xQ8) | 320,604 |
(C2xC10).37(C2xQ8) = (C2xC20).54D4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).37(C2xQ8) | 320,611 |
(C2xC10).38(C2xQ8) = C20:6(C4:C4) | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).38(C2xQ8) | 320,612 |
(C2xC10).39(C2xQ8) = (C2xC20).55D4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).39(C2xQ8) | 320,613 |
(C2xC10).40(C2xQ8) = C2xC40.6C4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).40(C2xQ8) | 320,734 |
(C2xC10).41(C2xQ8) = M4(2).Dic5 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 80 | 4 | (C2xC10).41(C2xQ8) | 320,752 |
(C2xC10).42(C2xQ8) = C2xC10.10C42 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).42(C2xQ8) | 320,835 |
(C2xC10).43(C2xQ8) = C24.62D10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).43(C2xQ8) | 320,837 |
(C2xC10).44(C2xQ8) = C24.64D10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).44(C2xQ8) | 320,839 |
(C2xC10).45(C2xQ8) = C2xC4xDic10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).45(C2xQ8) | 320,1139 |
(C2xC10).46(C2xQ8) = C2xC20:2Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).46(C2xQ8) | 320,1140 |
(C2xC10).47(C2xQ8) = C2xC20.6Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).47(C2xQ8) | 320,1141 |
(C2xC10).48(C2xQ8) = C42.274D10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).48(C2xQ8) | 320,1142 |
(C2xC10).49(C2xQ8) = C23:2Dic10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).49(C2xQ8) | 320,1155 |
(C2xC10).50(C2xQ8) = C2xC20:Q8 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).50(C2xQ8) | 320,1169 |
(C2xC10).51(C2xQ8) = C2xC4.Dic10 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).51(C2xQ8) | 320,1171 |
(C2xC10).52(C2xQ8) = C10.12- 1+4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).52(C2xQ8) | 320,1172 |
(C2xC10).53(C2xQ8) = C22xC10.D4 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).53(C2xQ8) | 320,1455 |
(C2xC10).54(C2xQ8) = C22xC4:Dic5 | φ: C2xQ8/C2xC4 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).54(C2xQ8) | 320,1457 |
(C2xC10).55(C2xQ8) = C5xD4:3Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).55(C2xQ8) | 320,1556 |
(C2xC10).56(C2xQ8) = (C2xC20):Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).56(C2xQ8) | 320,273 |
(C2xC10).57(C2xQ8) = C10.49(C4xD4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).57(C2xQ8) | 320,274 |
(C2xC10).58(C2xQ8) = Dic5:2C42 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).58(C2xQ8) | 320,276 |
(C2xC10).59(C2xQ8) = C5:2(C42:8C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).59(C2xQ8) | 320,277 |
(C2xC10).60(C2xQ8) = C10.51(C4xD4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).60(C2xQ8) | 320,279 |
(C2xC10).61(C2xQ8) = C2.(C4xD20) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).61(C2xQ8) | 320,280 |
(C2xC10).62(C2xQ8) = (C2xDic5):Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).62(C2xQ8) | 320,283 |
(C2xC10).63(C2xQ8) = C2.(C20:Q8) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).63(C2xQ8) | 320,284 |
(C2xC10).64(C2xQ8) = (C2xDic5).Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).64(C2xQ8) | 320,285 |
(C2xC10).65(C2xQ8) = (C2xC20).28D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).65(C2xQ8) | 320,286 |
(C2xC10).66(C2xQ8) = D5xC2.C42 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).66(C2xQ8) | 320,290 |
(C2xC10).67(C2xQ8) = D10:2(C4:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).67(C2xQ8) | 320,294 |
(C2xC10).68(C2xQ8) = D10:3(C4:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).68(C2xQ8) | 320,295 |
(C2xC10).69(C2xQ8) = (C2xC4).20D20 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).69(C2xQ8) | 320,300 |
(C2xC10).70(C2xQ8) = (C22xD5).Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).70(C2xQ8) | 320,303 |
(C2xC10).71(C2xQ8) = (C2xC20).33D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).71(C2xQ8) | 320,304 |
(C2xC10).72(C2xQ8) = C10.96(C4xD4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).72(C2xQ8) | 320,599 |
(C2xC10).73(C2xQ8) = C20:4(C4:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).73(C2xQ8) | 320,600 |
(C2xC10).74(C2xQ8) = (C2xDic5):6Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).74(C2xQ8) | 320,601 |
(C2xC10).75(C2xQ8) = C4:C4xDic5 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).75(C2xQ8) | 320,602 |
(C2xC10).76(C2xQ8) = C20:5(C4:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).76(C2xQ8) | 320,603 |
(C2xC10).77(C2xQ8) = C10.97(C4xD4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).77(C2xQ8) | 320,605 |
(C2xC10).78(C2xQ8) = (C2xC4):Dic10 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).78(C2xQ8) | 320,606 |
(C2xC10).79(C2xQ8) = (C2xC20).287D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).79(C2xQ8) | 320,607 |
(C2xC10).80(C2xQ8) = C4:C4:5Dic5 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).80(C2xQ8) | 320,608 |
(C2xC10).81(C2xQ8) = (C2xC20).288D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).81(C2xQ8) | 320,609 |
(C2xC10).82(C2xQ8) = (C2xC20).53D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).82(C2xQ8) | 320,610 |
(C2xC10).83(C2xQ8) = D10:4(C4:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).83(C2xQ8) | 320,614 |
(C2xC10).84(C2xQ8) = D10:5(C4:C4) | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).84(C2xQ8) | 320,616 |
(C2xC10).85(C2xQ8) = (C2xC20).289D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).85(C2xQ8) | 320,619 |
(C2xC10).86(C2xQ8) = (C2xC20).56D4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).86(C2xQ8) | 320,621 |
(C2xC10).87(C2xQ8) = C10.C22wrC2 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).87(C2xQ8) | 320,856 |
(C2xC10).88(C2xQ8) = (Q8xC10):17C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).88(C2xQ8) | 320,857 |
(C2xC10).89(C2xQ8) = (C22xD5):Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).89(C2xQ8) | 320,858 |
(C2xC10).90(C2xQ8) = C2xDic5:3Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).90(C2xQ8) | 320,1168 |
(C2xC10).91(C2xQ8) = C2xDic5.Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).91(C2xQ8) | 320,1170 |
(C2xC10).92(C2xQ8) = C2xD5xC4:C4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).92(C2xQ8) | 320,1173 |
(C2xC10).93(C2xQ8) = C2xD10:Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).93(C2xQ8) | 320,1180 |
(C2xC10).94(C2xQ8) = C2xD10:2Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).94(C2xQ8) | 320,1181 |
(C2xC10).95(C2xQ8) = C10.102+ 1+4 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).95(C2xQ8) | 320,1183 |
(C2xC10).96(C2xQ8) = C2xDic5:Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).96(C2xQ8) | 320,1482 |
(C2xC10).97(C2xQ8) = C2xQ8xDic5 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).97(C2xQ8) | 320,1483 |
(C2xC10).98(C2xQ8) = C2xD10:3Q8 | φ: C2xQ8/Q8 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).98(C2xQ8) | 320,1485 |
(C2xC10).99(C2xQ8) = C10xC2.C42 | central extension (φ=1) | 320 | | (C2xC10).99(C2xQ8) | 320,876 |
(C2xC10).100(C2xQ8) = C4:C4xC20 | central extension (φ=1) | 320 | | (C2xC10).100(C2xQ8) | 320,879 |
(C2xC10).101(C2xQ8) = C5xC23.7Q8 | central extension (φ=1) | 160 | | (C2xC10).101(C2xQ8) | 320,881 |
(C2xC10).102(C2xQ8) = C5xC42:8C4 | central extension (φ=1) | 320 | | (C2xC10).102(C2xQ8) | 320,883 |
(C2xC10).103(C2xQ8) = C5xC42:9C4 | central extension (φ=1) | 320 | | (C2xC10).103(C2xQ8) | 320,885 |
(C2xC10).104(C2xQ8) = C5xC23.8Q8 | central extension (φ=1) | 160 | | (C2xC10).104(C2xQ8) | 320,886 |
(C2xC10).105(C2xQ8) = C5xC23.63C23 | central extension (φ=1) | 320 | | (C2xC10).105(C2xQ8) | 320,888 |
(C2xC10).106(C2xQ8) = C5xC23.65C23 | central extension (φ=1) | 320 | | (C2xC10).106(C2xQ8) | 320,890 |
(C2xC10).107(C2xQ8) = C5xC23.67C23 | central extension (φ=1) | 320 | | (C2xC10).107(C2xQ8) | 320,892 |
(C2xC10).108(C2xQ8) = C5xC23:Q8 | central extension (φ=1) | 160 | | (C2xC10).108(C2xQ8) | 320,894 |
(C2xC10).109(C2xQ8) = C5xC23.78C23 | central extension (φ=1) | 320 | | (C2xC10).109(C2xQ8) | 320,896 |
(C2xC10).110(C2xQ8) = C5xC23.Q8 | central extension (φ=1) | 160 | | (C2xC10).110(C2xQ8) | 320,897 |
(C2xC10).111(C2xQ8) = C5xC23.81C23 | central extension (φ=1) | 320 | | (C2xC10).111(C2xQ8) | 320,899 |
(C2xC10).112(C2xQ8) = C5xC23.4Q8 | central extension (φ=1) | 160 | | (C2xC10).112(C2xQ8) | 320,900 |
(C2xC10).113(C2xQ8) = C5xC23.83C23 | central extension (φ=1) | 320 | | (C2xC10).113(C2xQ8) | 320,901 |
(C2xC10).114(C2xQ8) = C4:C4xC2xC10 | central extension (φ=1) | 320 | | (C2xC10).114(C2xQ8) | 320,1515 |
(C2xC10).115(C2xQ8) = Q8xC2xC20 | central extension (φ=1) | 320 | | (C2xC10).115(C2xQ8) | 320,1518 |
(C2xC10).116(C2xQ8) = C10xC42.C2 | central extension (φ=1) | 320 | | (C2xC10).116(C2xQ8) | 320,1529 |
(C2xC10).117(C2xQ8) = C10xC4:Q8 | central extension (φ=1) | 320 | | (C2xC10).117(C2xQ8) | 320,1533 |