Copied to
clipboard

G = (C2×C20).33D4order 320 = 26·5

7th non-split extension by C2×C20 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C20).33D4, (C2×C4).22D20, (C22×D5).2Q8, C22.44(Q8×D5), C2.4(C204D4), C10.2(C41D4), (C22×C4).73D10, C22.84(C2×D20), C51(C23.4Q8), C2.9(D102Q8), C2.C4214D5, C10.28(C22⋊Q8), (C23×D5).9C22, (C22×C20).47C22, C23.365(C22×D5), C22.91(D42D5), (C22×C10).302C23, C2.9(C22.D20), C10.13(C22.D4), (C22×Dic5).24C22, (C2×C4⋊Dic5)⋊4C2, (C2×C10).98(C2×D4), (C2×C10).71(C2×Q8), (C2×D10⋊C4).19C2, (C2×C10).136(C4○D4), (C5×C2.C42)⋊12C2, SmallGroup(320,304)

Series: Derived Chief Lower central Upper central

C1C22×C10 — (C2×C20).33D4
C1C5C10C2×C10C22×C10C23×D5C2×D10⋊C4 — (C2×C20).33D4
C5C22×C10 — (C2×C20).33D4
C1C23C2.C42

Generators and relations for (C2×C20).33D4
 G = < a,b,c,d | a2=b4=c20=1, d2=a, cbc-1=ab=ba, ac=ca, ad=da, dbd-1=b-1, dcd-1=ac-1 >

Subgroups: 790 in 186 conjugacy classes, 65 normal (12 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic5, C20, D10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C23.4Q8, C4⋊Dic5, D10⋊C4, C22×Dic5, C22×C20, C23×D5, C5×C2.C42, C2×C4⋊Dic5, C2×D10⋊C4, (C2×C20).33D4
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, D10, C22⋊Q8, C22.D4, C41D4, D20, C22×D5, C23.4Q8, C2×D20, D42D5, Q8×D5, C204D4, C22.D20, D102Q8, (C2×C20).33D4

Smallest permutation representation of (C2×C20).33D4
On 160 points
Generators in S160
(1 120)(2 101)(3 102)(4 103)(5 104)(6 105)(7 106)(8 107)(9 108)(10 109)(11 110)(12 111)(13 112)(14 113)(15 114)(16 115)(17 116)(18 117)(19 118)(20 119)(21 65)(22 66)(23 67)(24 68)(25 69)(26 70)(27 71)(28 72)(29 73)(30 74)(31 75)(32 76)(33 77)(34 78)(35 79)(36 80)(37 61)(38 62)(39 63)(40 64)(41 126)(42 127)(43 128)(44 129)(45 130)(46 131)(47 132)(48 133)(49 134)(50 135)(51 136)(52 137)(53 138)(54 139)(55 140)(56 121)(57 122)(58 123)(59 124)(60 125)(81 150)(82 151)(83 152)(84 153)(85 154)(86 155)(87 156)(88 157)(89 158)(90 159)(91 160)(92 141)(93 142)(94 143)(95 144)(96 145)(97 146)(98 147)(99 148)(100 149)
(1 96 80 127)(2 146 61 43)(3 98 62 129)(4 148 63 45)(5 100 64 131)(6 150 65 47)(7 82 66 133)(8 152 67 49)(9 84 68 135)(10 154 69 51)(11 86 70 137)(12 156 71 53)(13 88 72 139)(14 158 73 55)(15 90 74 121)(16 160 75 57)(17 92 76 123)(18 142 77 59)(19 94 78 125)(20 144 79 41)(21 132 105 81)(22 48 106 151)(23 134 107 83)(24 50 108 153)(25 136 109 85)(26 52 110 155)(27 138 111 87)(28 54 112 157)(29 140 113 89)(30 56 114 159)(31 122 115 91)(32 58 116 141)(33 124 117 93)(34 60 118 143)(35 126 119 95)(36 42 120 145)(37 128 101 97)(38 44 102 147)(39 130 103 99)(40 46 104 149)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 119 120 20)(2 19 101 118)(3 117 102 18)(4 17 103 116)(5 115 104 16)(6 15 105 114)(7 113 106 14)(8 13 107 112)(9 111 108 12)(10 11 109 110)(21 30 65 74)(22 73 66 29)(23 28 67 72)(24 71 68 27)(25 26 69 70)(31 40 75 64)(32 63 76 39)(33 38 77 62)(34 61 78 37)(35 36 79 80)(41 96 126 145)(42 144 127 95)(43 94 128 143)(44 142 129 93)(45 92 130 141)(46 160 131 91)(47 90 132 159)(48 158 133 89)(49 88 134 157)(50 156 135 87)(51 86 136 155)(52 154 137 85)(53 84 138 153)(54 152 139 83)(55 82 140 151)(56 150 121 81)(57 100 122 149)(58 148 123 99)(59 98 124 147)(60 146 125 97)

G:=sub<Sym(160)| (1,120)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,109)(11,110)(12,111)(13,112)(14,113)(15,114)(16,115)(17,116)(18,117)(19,118)(20,119)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,61)(38,62)(39,63)(40,64)(41,126)(42,127)(43,128)(44,129)(45,130)(46,131)(47,132)(48,133)(49,134)(50,135)(51,136)(52,137)(53,138)(54,139)(55,140)(56,121)(57,122)(58,123)(59,124)(60,125)(81,150)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159)(91,160)(92,141)(93,142)(94,143)(95,144)(96,145)(97,146)(98,147)(99,148)(100,149), (1,96,80,127)(2,146,61,43)(3,98,62,129)(4,148,63,45)(5,100,64,131)(6,150,65,47)(7,82,66,133)(8,152,67,49)(9,84,68,135)(10,154,69,51)(11,86,70,137)(12,156,71,53)(13,88,72,139)(14,158,73,55)(15,90,74,121)(16,160,75,57)(17,92,76,123)(18,142,77,59)(19,94,78,125)(20,144,79,41)(21,132,105,81)(22,48,106,151)(23,134,107,83)(24,50,108,153)(25,136,109,85)(26,52,110,155)(27,138,111,87)(28,54,112,157)(29,140,113,89)(30,56,114,159)(31,122,115,91)(32,58,116,141)(33,124,117,93)(34,60,118,143)(35,126,119,95)(36,42,120,145)(37,128,101,97)(38,44,102,147)(39,130,103,99)(40,46,104,149), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,119,120,20)(2,19,101,118)(3,117,102,18)(4,17,103,116)(5,115,104,16)(6,15,105,114)(7,113,106,14)(8,13,107,112)(9,111,108,12)(10,11,109,110)(21,30,65,74)(22,73,66,29)(23,28,67,72)(24,71,68,27)(25,26,69,70)(31,40,75,64)(32,63,76,39)(33,38,77,62)(34,61,78,37)(35,36,79,80)(41,96,126,145)(42,144,127,95)(43,94,128,143)(44,142,129,93)(45,92,130,141)(46,160,131,91)(47,90,132,159)(48,158,133,89)(49,88,134,157)(50,156,135,87)(51,86,136,155)(52,154,137,85)(53,84,138,153)(54,152,139,83)(55,82,140,151)(56,150,121,81)(57,100,122,149)(58,148,123,99)(59,98,124,147)(60,146,125,97)>;

G:=Group( (1,120)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,109)(11,110)(12,111)(13,112)(14,113)(15,114)(16,115)(17,116)(18,117)(19,118)(20,119)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,61)(38,62)(39,63)(40,64)(41,126)(42,127)(43,128)(44,129)(45,130)(46,131)(47,132)(48,133)(49,134)(50,135)(51,136)(52,137)(53,138)(54,139)(55,140)(56,121)(57,122)(58,123)(59,124)(60,125)(81,150)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159)(91,160)(92,141)(93,142)(94,143)(95,144)(96,145)(97,146)(98,147)(99,148)(100,149), (1,96,80,127)(2,146,61,43)(3,98,62,129)(4,148,63,45)(5,100,64,131)(6,150,65,47)(7,82,66,133)(8,152,67,49)(9,84,68,135)(10,154,69,51)(11,86,70,137)(12,156,71,53)(13,88,72,139)(14,158,73,55)(15,90,74,121)(16,160,75,57)(17,92,76,123)(18,142,77,59)(19,94,78,125)(20,144,79,41)(21,132,105,81)(22,48,106,151)(23,134,107,83)(24,50,108,153)(25,136,109,85)(26,52,110,155)(27,138,111,87)(28,54,112,157)(29,140,113,89)(30,56,114,159)(31,122,115,91)(32,58,116,141)(33,124,117,93)(34,60,118,143)(35,126,119,95)(36,42,120,145)(37,128,101,97)(38,44,102,147)(39,130,103,99)(40,46,104,149), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,119,120,20)(2,19,101,118)(3,117,102,18)(4,17,103,116)(5,115,104,16)(6,15,105,114)(7,113,106,14)(8,13,107,112)(9,111,108,12)(10,11,109,110)(21,30,65,74)(22,73,66,29)(23,28,67,72)(24,71,68,27)(25,26,69,70)(31,40,75,64)(32,63,76,39)(33,38,77,62)(34,61,78,37)(35,36,79,80)(41,96,126,145)(42,144,127,95)(43,94,128,143)(44,142,129,93)(45,92,130,141)(46,160,131,91)(47,90,132,159)(48,158,133,89)(49,88,134,157)(50,156,135,87)(51,86,136,155)(52,154,137,85)(53,84,138,153)(54,152,139,83)(55,82,140,151)(56,150,121,81)(57,100,122,149)(58,148,123,99)(59,98,124,147)(60,146,125,97) );

G=PermutationGroup([[(1,120),(2,101),(3,102),(4,103),(5,104),(6,105),(7,106),(8,107),(9,108),(10,109),(11,110),(12,111),(13,112),(14,113),(15,114),(16,115),(17,116),(18,117),(19,118),(20,119),(21,65),(22,66),(23,67),(24,68),(25,69),(26,70),(27,71),(28,72),(29,73),(30,74),(31,75),(32,76),(33,77),(34,78),(35,79),(36,80),(37,61),(38,62),(39,63),(40,64),(41,126),(42,127),(43,128),(44,129),(45,130),(46,131),(47,132),(48,133),(49,134),(50,135),(51,136),(52,137),(53,138),(54,139),(55,140),(56,121),(57,122),(58,123),(59,124),(60,125),(81,150),(82,151),(83,152),(84,153),(85,154),(86,155),(87,156),(88,157),(89,158),(90,159),(91,160),(92,141),(93,142),(94,143),(95,144),(96,145),(97,146),(98,147),(99,148),(100,149)], [(1,96,80,127),(2,146,61,43),(3,98,62,129),(4,148,63,45),(5,100,64,131),(6,150,65,47),(7,82,66,133),(8,152,67,49),(9,84,68,135),(10,154,69,51),(11,86,70,137),(12,156,71,53),(13,88,72,139),(14,158,73,55),(15,90,74,121),(16,160,75,57),(17,92,76,123),(18,142,77,59),(19,94,78,125),(20,144,79,41),(21,132,105,81),(22,48,106,151),(23,134,107,83),(24,50,108,153),(25,136,109,85),(26,52,110,155),(27,138,111,87),(28,54,112,157),(29,140,113,89),(30,56,114,159),(31,122,115,91),(32,58,116,141),(33,124,117,93),(34,60,118,143),(35,126,119,95),(36,42,120,145),(37,128,101,97),(38,44,102,147),(39,130,103,99),(40,46,104,149)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,119,120,20),(2,19,101,118),(3,117,102,18),(4,17,103,116),(5,115,104,16),(6,15,105,114),(7,113,106,14),(8,13,107,112),(9,111,108,12),(10,11,109,110),(21,30,65,74),(22,73,66,29),(23,28,67,72),(24,71,68,27),(25,26,69,70),(31,40,75,64),(32,63,76,39),(33,38,77,62),(34,61,78,37),(35,36,79,80),(41,96,126,145),(42,144,127,95),(43,94,128,143),(44,142,129,93),(45,92,130,141),(46,160,131,91),(47,90,132,159),(48,158,133,89),(49,88,134,157),(50,156,135,87),(51,86,136,155),(52,154,137,85),(53,84,138,153),(54,152,139,83),(55,82,140,151),(56,150,121,81),(57,100,122,149),(58,148,123,99),(59,98,124,147),(60,146,125,97)]])

62 conjugacy classes

class 1 2A···2G2H2I4A···4F4G···4L5A5B10A···10N20A···20X
order12···2224···44···45510···1020···20
size11···120204···420···20222···24···4

62 irreducible representations

dim111122222244
type+++++-+++--
imageC1C2C2C2D4Q8D5C4○D4D10D20D42D5Q8×D5
kernel(C2×C20).33D4C5×C2.C42C2×C4⋊Dic5C2×D10⋊C4C2×C20C22×D5C2.C42C2×C10C22×C4C2×C4C22C22
# reps1133622662462

Matrix representation of (C2×C20).33D4 in GL6(𝔽41)

100000
010000
001000
000100
0000400
0000040
,
30130000
19110000
002900
0043900
0000940
00003932
,
1400000
8340000
0023000
00271600
000019
0000040
,
4000000
3310000
00393200
0014200
000019
00001840

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[30,19,0,0,0,0,13,11,0,0,0,0,0,0,2,4,0,0,0,0,9,39,0,0,0,0,0,0,9,39,0,0,0,0,40,32],[1,8,0,0,0,0,40,34,0,0,0,0,0,0,2,27,0,0,0,0,30,16,0,0,0,0,0,0,1,0,0,0,0,0,9,40],[40,33,0,0,0,0,0,1,0,0,0,0,0,0,39,14,0,0,0,0,32,2,0,0,0,0,0,0,1,18,0,0,0,0,9,40] >;

(C2×C20).33D4 in GAP, Magma, Sage, TeX

(C_2\times C_{20})._{33}D_4
% in TeX

G:=Group("(C2xC20).33D4");
// GroupNames label

G:=SmallGroup(320,304);
// by ID

G=gap.SmallGroup(320,304);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,344,254,387,226,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^20=1,d^2=a,c*b*c^-1=a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b^-1,d*c*d^-1=a*c^-1>;
// generators/relations

׿
×
𝔽