extension | φ:Q→Out N | d | ρ | Label | ID |
(D5×C2×C8)⋊1C2 = D5×C4○D8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | 4 | (D5xC2xC8):1C2 | 320,1439 |
(D5×C2×C8)⋊2C2 = C8⋊7D20 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):2C2 | 320,510 |
(D5×C2×C8)⋊3C2 = C40⋊6D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):3C2 | 320,784 |
(D5×C2×C8)⋊4C2 = C2×D5×D8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | | (D5xC2xC8):4C2 | 320,1426 |
(D5×C2×C8)⋊5C2 = C2×D8⋊3D5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):5C2 | 320,1428 |
(D5×C2×C8)⋊6C2 = C2×Q8.D10 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):6C2 | 320,1437 |
(D5×C2×C8)⋊7C2 = C8⋊8D20 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):7C2 | 320,491 |
(D5×C2×C8)⋊8C2 = C40⋊14D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):8C2 | 320,798 |
(D5×C2×C8)⋊9C2 = C2×D5×SD16 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | | (D5xC2xC8):9C2 | 320,1430 |
(D5×C2×C8)⋊10C2 = C2×SD16⋊3D5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):10C2 | 320,1433 |
(D5×C2×C8)⋊11C2 = C8×D20 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):11C2 | 320,313 |
(D5×C2×C8)⋊12C2 = D5×C22⋊C8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | | (D5xC2xC8):12C2 | 320,351 |
(D5×C2×C8)⋊13C2 = C5⋊5(C8×D4) | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):13C2 | 320,352 |
(D5×C2×C8)⋊14C2 = C22⋊C8⋊D5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):14C2 | 320,354 |
(D5×C2×C8)⋊15C2 = D10⋊4M4(2) | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):15C2 | 320,355 |
(D5×C2×C8)⋊16C2 = D5×D4⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | | (D5xC2xC8):16C2 | 320,396 |
(D5×C2×C8)⋊17C2 = D4⋊2D5⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):17C2 | 320,399 |
(D5×C2×C8)⋊18C2 = D10⋊D8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):18C2 | 320,402 |
(D5×C2×C8)⋊19C2 = D10⋊SD16 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):19C2 | 320,405 |
(D5×C2×C8)⋊20C2 = Q8⋊2D5⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):20C2 | 320,431 |
(D5×C2×C8)⋊21C2 = D10⋊2SD16 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):21C2 | 320,434 |
(D5×C2×C8)⋊22C2 = D20⋊5C8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):22C2 | 320,461 |
(D5×C2×C8)⋊23C2 = D10⋊5M4(2) | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):23C2 | 320,463 |
(D5×C2×C8)⋊24C2 = C8×C5⋊D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):24C2 | 320,736 |
(D5×C2×C8)⋊25C2 = C2×D20.3C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):25C2 | 320,1410 |
(D5×C2×C8)⋊26C2 = C8⋊9D20 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):26C2 | 320,333 |
(D5×C2×C8)⋊27C2 = C40⋊D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):27C2 | 320,754 |
(D5×C2×C8)⋊28C2 = C2×D5×M4(2) | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | | (D5xC2xC8):28C2 | 320,1415 |
(D5×C2×C8)⋊29C2 = C2×D20.2C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8):29C2 | 320,1416 |
(D5×C2×C8)⋊30C2 = D5×C8○D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | 4 | (D5xC2xC8):30C2 | 320,1421 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(D5×C2×C8).1C2 = D5×C8.C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | 4 | (D5xC2xC8).1C2 | 320,519 |
(D5×C2×C8).2C2 = D5×C2.D8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).2C2 | 320,506 |
(D5×C2×C8).3C2 = C8.27(C4×D5) | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).3C2 | 320,507 |
(D5×C2×C8).4C2 = D10⋊2Q16 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).4C2 | 320,514 |
(D5×C2×C8).5C2 = D10⋊3Q16 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).5C2 | 320,815 |
(D5×C2×C8).6C2 = C2×D5×Q16 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).6C2 | 320,1435 |
(D5×C2×C8).7C2 = D5×C4.Q8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).7C2 | 320,486 |
(D5×C2×C8).8C2 = (C8×D5)⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).8C2 | 320,487 |
(D5×C2×C8).9C2 = D10⋊1C16 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).9C2 | 320,65 |
(D5×C2×C8).10C2 = D10⋊C16 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).10C2 | 320,225 |
(D5×C2×C8).11C2 = D10.3M4(2) | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | | (D5xC2xC8).11C2 | 320,230 |
(D5×C2×C8).12C2 = D10.10D8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | | (D5xC2xC8).12C2 | 320,231 |
(D5×C2×C8).13C2 = C20.10C42 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).13C2 | 320,234 |
(D5×C2×C8).14C2 = D10.5C42 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).14C2 | 320,316 |
(D5×C2×C8).15C2 = D5×Q8⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).15C2 | 320,428 |
(D5×C2×C8).16C2 = D10⋊Q16 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).16C2 | 320,440 |
(D5×C2×C8).17C2 = D5×C4⋊C8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).17C2 | 320,459 |
(D5×C2×C8).18C2 = C42.30D10 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).18C2 | 320,466 |
(D5×C2×C8).19C2 = C2×C80⋊C2 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).19C2 | 320,527 |
(D5×C2×C8).20C2 = C2×D5.D8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | | (D5xC2xC8).20C2 | 320,1058 |
(D5×C2×C8).21C2 = C2×D10.Q8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).21C2 | 320,1061 |
(D5×C2×C8).22C2 = (C2×C8)⋊6F5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | 4 | (D5xC2xC8).22C2 | 320,1059 |
(D5×C2×C8).23C2 = (C8×D5).C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | 4 | (D5xC2xC8).23C2 | 320,1062 |
(D5×C2×C8).24C2 = C2×C40⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | | (D5xC2xC8).24C2 | 320,1057 |
(D5×C2×C8).25C2 = C2×C40.C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).25C2 | 320,1060 |
(D5×C2×C8).26C2 = D5×C8⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).26C2 | 320,331 |
(D5×C2×C8).27C2 = D10.7C42 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).27C2 | 320,335 |
(D5×C2×C8).28C2 = D5×M5(2) | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | 4 | (D5xC2xC8).28C2 | 320,533 |
(D5×C2×C8).29C2 = C2×D5⋊C16 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).29C2 | 320,1051 |
(D5×C2×C8).30C2 = C2×C8.F5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 160 | | (D5xC2xC8).30C2 | 320,1052 |
(D5×C2×C8).31C2 = D5⋊M5(2) | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | 4 | (D5xC2xC8).31C2 | 320,1053 |
(D5×C2×C8).32C2 = C2×C8×F5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | | (D5xC2xC8).32C2 | 320,1054 |
(D5×C2×C8).33C2 = C2×C8⋊F5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | | (D5xC2xC8).33C2 | 320,1055 |
(D5×C2×C8).34C2 = C20.12C42 | φ: C2/C1 → C2 ⊆ Out D5×C2×C8 | 80 | 4 | (D5xC2xC8).34C2 | 320,1056 |
(D5×C2×C8).35C2 = D5×C4×C8 | φ: trivial image | 160 | | (D5xC2xC8).35C2 | 320,311 |
(D5×C2×C8).36C2 = D5×C2×C16 | φ: trivial image | 160 | | (D5xC2xC8).36C2 | 320,526 |