Copied to
clipboard

G = C406D4order 320 = 26·5

6th semidirect product of C40 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C406D4, D103D8, (C2×D8)⋊5D5, (C10×D8)⋊6C2, C55(C87D4), C2.29(D5×D8), C202D44C2, C810(C5⋊D4), C405C423C2, C10.46(C2×D8), (C2×D4).64D10, C20.166(C2×D4), (C2×C8).238D10, C20.93(C4○D4), C10.34(C4○D8), D4⋊Dic529C2, (C2×C40).90C22, (C22×D5).89D4, C22.257(D4×D5), C4.28(D42D5), C2.18(D83D5), C2.16(C202D4), (C2×C20).434C23, (C2×Dic5).157D4, (D4×C10).83C22, C10.109(C4⋊D4), C4⋊Dic5.165C22, (D5×C2×C8)⋊3C2, C4.79(C2×C5⋊D4), (C2×C10).347(C2×D4), (C2×C4×D5).309C22, (C2×C4).524(C22×D5), (C2×C52C8).279C22, SmallGroup(320,784)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C406D4
C1C5C10C2×C10C2×C20C2×C4×D5D5×C2×C8 — C406D4
C5C10C2×C20 — C406D4
C1C22C2×C4C2×D8

Generators and relations for C406D4
 G = < a,b,c | a40=b4=c2=1, bab-1=a-1, cac=a9, cbc=b-1 >

Subgroups: 566 in 134 conjugacy classes, 43 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, C2×D4, Dic5, C20, D10, D10, C2×C10, C2×C10, D4⋊C4, C2.D8, C4⋊D4, C22×C8, C2×D8, C52C8, C40, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, C87D4, C8×D5, C2×C52C8, C4⋊Dic5, C23.D5, C2×C40, C5×D8, C2×C4×D5, C2×C5⋊D4, D4×C10, C405C4, D4⋊Dic5, D5×C2×C8, C202D4, C10×D8, C406D4
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, C4○D4, D10, C4⋊D4, C2×D8, C4○D8, C5⋊D4, C22×D5, C87D4, D4×D5, D42D5, C2×C5⋊D4, D5×D8, D83D5, C202D4, C406D4

Smallest permutation representation of C406D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 42 138 109)(2 41 139 108)(3 80 140 107)(4 79 141 106)(5 78 142 105)(6 77 143 104)(7 76 144 103)(8 75 145 102)(9 74 146 101)(10 73 147 100)(11 72 148 99)(12 71 149 98)(13 70 150 97)(14 69 151 96)(15 68 152 95)(16 67 153 94)(17 66 154 93)(18 65 155 92)(19 64 156 91)(20 63 157 90)(21 62 158 89)(22 61 159 88)(23 60 160 87)(24 59 121 86)(25 58 122 85)(26 57 123 84)(27 56 124 83)(28 55 125 82)(29 54 126 81)(30 53 127 120)(31 52 128 119)(32 51 129 118)(33 50 130 117)(34 49 131 116)(35 48 132 115)(36 47 133 114)(37 46 134 113)(38 45 135 112)(39 44 136 111)(40 43 137 110)
(2 10)(3 19)(4 28)(5 37)(7 15)(8 24)(9 33)(12 20)(13 29)(14 38)(17 25)(18 34)(22 30)(23 39)(27 35)(32 40)(41 100)(42 109)(43 118)(44 87)(45 96)(46 105)(47 114)(48 83)(49 92)(50 101)(51 110)(52 119)(53 88)(54 97)(55 106)(56 115)(57 84)(58 93)(59 102)(60 111)(61 120)(62 89)(63 98)(64 107)(65 116)(66 85)(67 94)(68 103)(69 112)(70 81)(71 90)(72 99)(73 108)(74 117)(75 86)(76 95)(77 104)(78 113)(79 82)(80 91)(121 145)(122 154)(124 132)(125 141)(126 150)(127 159)(129 137)(130 146)(131 155)(134 142)(135 151)(136 160)(139 147)(140 156)(144 152)(149 157)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,42,138,109)(2,41,139,108)(3,80,140,107)(4,79,141,106)(5,78,142,105)(6,77,143,104)(7,76,144,103)(8,75,145,102)(9,74,146,101)(10,73,147,100)(11,72,148,99)(12,71,149,98)(13,70,150,97)(14,69,151,96)(15,68,152,95)(16,67,153,94)(17,66,154,93)(18,65,155,92)(19,64,156,91)(20,63,157,90)(21,62,158,89)(22,61,159,88)(23,60,160,87)(24,59,121,86)(25,58,122,85)(26,57,123,84)(27,56,124,83)(28,55,125,82)(29,54,126,81)(30,53,127,120)(31,52,128,119)(32,51,129,118)(33,50,130,117)(34,49,131,116)(35,48,132,115)(36,47,133,114)(37,46,134,113)(38,45,135,112)(39,44,136,111)(40,43,137,110), (2,10)(3,19)(4,28)(5,37)(7,15)(8,24)(9,33)(12,20)(13,29)(14,38)(17,25)(18,34)(22,30)(23,39)(27,35)(32,40)(41,100)(42,109)(43,118)(44,87)(45,96)(46,105)(47,114)(48,83)(49,92)(50,101)(51,110)(52,119)(53,88)(54,97)(55,106)(56,115)(57,84)(58,93)(59,102)(60,111)(61,120)(62,89)(63,98)(64,107)(65,116)(66,85)(67,94)(68,103)(69,112)(70,81)(71,90)(72,99)(73,108)(74,117)(75,86)(76,95)(77,104)(78,113)(79,82)(80,91)(121,145)(122,154)(124,132)(125,141)(126,150)(127,159)(129,137)(130,146)(131,155)(134,142)(135,151)(136,160)(139,147)(140,156)(144,152)(149,157)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,42,138,109)(2,41,139,108)(3,80,140,107)(4,79,141,106)(5,78,142,105)(6,77,143,104)(7,76,144,103)(8,75,145,102)(9,74,146,101)(10,73,147,100)(11,72,148,99)(12,71,149,98)(13,70,150,97)(14,69,151,96)(15,68,152,95)(16,67,153,94)(17,66,154,93)(18,65,155,92)(19,64,156,91)(20,63,157,90)(21,62,158,89)(22,61,159,88)(23,60,160,87)(24,59,121,86)(25,58,122,85)(26,57,123,84)(27,56,124,83)(28,55,125,82)(29,54,126,81)(30,53,127,120)(31,52,128,119)(32,51,129,118)(33,50,130,117)(34,49,131,116)(35,48,132,115)(36,47,133,114)(37,46,134,113)(38,45,135,112)(39,44,136,111)(40,43,137,110), (2,10)(3,19)(4,28)(5,37)(7,15)(8,24)(9,33)(12,20)(13,29)(14,38)(17,25)(18,34)(22,30)(23,39)(27,35)(32,40)(41,100)(42,109)(43,118)(44,87)(45,96)(46,105)(47,114)(48,83)(49,92)(50,101)(51,110)(52,119)(53,88)(54,97)(55,106)(56,115)(57,84)(58,93)(59,102)(60,111)(61,120)(62,89)(63,98)(64,107)(65,116)(66,85)(67,94)(68,103)(69,112)(70,81)(71,90)(72,99)(73,108)(74,117)(75,86)(76,95)(77,104)(78,113)(79,82)(80,91)(121,145)(122,154)(124,132)(125,141)(126,150)(127,159)(129,137)(130,146)(131,155)(134,142)(135,151)(136,160)(139,147)(140,156)(144,152)(149,157) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,42,138,109),(2,41,139,108),(3,80,140,107),(4,79,141,106),(5,78,142,105),(6,77,143,104),(7,76,144,103),(8,75,145,102),(9,74,146,101),(10,73,147,100),(11,72,148,99),(12,71,149,98),(13,70,150,97),(14,69,151,96),(15,68,152,95),(16,67,153,94),(17,66,154,93),(18,65,155,92),(19,64,156,91),(20,63,157,90),(21,62,158,89),(22,61,159,88),(23,60,160,87),(24,59,121,86),(25,58,122,85),(26,57,123,84),(27,56,124,83),(28,55,125,82),(29,54,126,81),(30,53,127,120),(31,52,128,119),(32,51,129,118),(33,50,130,117),(34,49,131,116),(35,48,132,115),(36,47,133,114),(37,46,134,113),(38,45,135,112),(39,44,136,111),(40,43,137,110)], [(2,10),(3,19),(4,28),(5,37),(7,15),(8,24),(9,33),(12,20),(13,29),(14,38),(17,25),(18,34),(22,30),(23,39),(27,35),(32,40),(41,100),(42,109),(43,118),(44,87),(45,96),(46,105),(47,114),(48,83),(49,92),(50,101),(51,110),(52,119),(53,88),(54,97),(55,106),(56,115),(57,84),(58,93),(59,102),(60,111),(61,120),(62,89),(63,98),(64,107),(65,116),(66,85),(67,94),(68,103),(69,112),(70,81),(71,90),(72,99),(73,108),(74,117),(75,86),(76,95),(77,104),(78,113),(79,82),(80,91),(121,145),(122,154),(124,132),(125,141),(126,150),(127,159),(129,137),(130,146),(131,155),(134,142),(135,151),(136,160),(139,147),(140,156),(144,152),(149,157)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F5A5B8A8B8C8D8E8F8G8H10A···10F10G···10N20A20B20C20D40A···40H
order12222222444444558888888810···1010···102020202040···40
size11118810102210104040222222101010102···28···844444···4

50 irreducible representations

dim11111122222222224444
type+++++++++++++-++-
imageC1C2C2C2C2C2D4D4D4D5C4○D4D8D10D10C4○D8C5⋊D4D42D5D4×D5D5×D8D83D5
kernelC406D4C405C4D4⋊Dic5D5×C2×C8C202D4C10×D8C40C2×Dic5C22×D5C2×D8C20D10C2×C8C2×D4C10C8C4C22C2C2
# reps11212121122424482244

Matrix representation of C406D4 in GL4(𝔽41) generated by

35700
35000
0030
002414
,
211700
152000
0019
00040
,
6100
63500
0010
0001
G:=sub<GL(4,GF(41))| [35,35,0,0,7,0,0,0,0,0,3,24,0,0,0,14],[21,15,0,0,17,20,0,0,0,0,1,0,0,0,9,40],[6,6,0,0,1,35,0,0,0,0,1,0,0,0,0,1] >;

C406D4 in GAP, Magma, Sage, TeX

C_{40}\rtimes_6D_4
% in TeX

G:=Group("C40:6D4");
// GroupNames label

G:=SmallGroup(320,784);
// by ID

G=gap.SmallGroup(320,784);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,254,219,438,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^4=c^2=1,b*a*b^-1=a^-1,c*a*c=a^9,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽