Extensions 1→N→G→Q→1 with N=C2xSD16 and Q=D5

Direct product G=NxQ with N=C2xSD16 and Q=D5
dρLabelID
C2xD5xSD1680C2xD5xSD16320,1430

Semidirect products G=N:Q with N=C2xSD16 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2xSD16):1D5 = C40:8D4φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16):1D5320,801
(C2xSD16):2D5 = C40:9D4φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16):2D5320,803
(C2xSD16):3D5 = C40.44D4φ: D5/C5C2 ⊆ Out C2xSD16804(C2xSD16):3D5320,804
(C2xSD16):4D5 = C2xD40:C2φ: D5/C5C2 ⊆ Out C2xSD1680(C2xSD16):4D5320,1431
(C2xSD16):5D5 = C2xSD16:D5φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16):5D5320,1432
(C2xSD16):6D5 = D20.29D4φ: D5/C5C2 ⊆ Out C2xSD16804(C2xSD16):6D5320,1434
(C2xSD16):7D5 = Dic5:5SD16φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16):7D5320,790
(C2xSD16):8D5 = (C5xD4).D4φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16):8D5320,792
(C2xSD16):9D5 = C40.43D4φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16):9D5320,795
(C2xSD16):10D5 = D10:6SD16φ: D5/C5C2 ⊆ Out C2xSD1680(C2xSD16):10D5320,796
(C2xSD16):11D5 = D10:8SD16φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16):11D5320,797
(C2xSD16):12D5 = C40:14D4φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16):12D5320,798
(C2xSD16):13D5 = D20:7D4φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16):13D5320,799
(C2xSD16):14D5 = Dic10.16D4φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16):14D5320,800
(C2xSD16):15D5 = C40:15D4φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16):15D5320,802
(C2xSD16):16D5 = C2xSD16:3D5φ: trivial image160(C2xSD16):16D5320,1433

Non-split extensions G=N.Q with N=C2xSD16 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2xSD16).1D5 = SD16:Dic5φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16).1D5320,791
(C2xSD16).2D5 = C40.31D4φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16).2D5320,794
(C2xSD16).3D5 = Dic5:3SD16φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16).3D5320,789
(C2xSD16).4D5 = (C5xQ8).D4φ: D5/C5C2 ⊆ Out C2xSD16160(C2xSD16).4D5320,793
(C2xSD16).5D5 = SD16xDic5φ: trivial image160(C2xSD16).5D5320,788

׿
x
:
Z
F
o
wr
Q
<