Copied to
clipboard

G = D207D4order 320 = 26·5

7th semidirect product of D20 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D207D4, (C5×Q8)⋊6D4, C4.64(D4×D5), C202D47C2, C56(D4⋊D4), Q83(C5⋊D4), C20.49(C2×D4), (C2×SD16)⋊13D5, (C2×D4).74D10, (C2×C8).148D10, D205C436C2, D101C834C2, C10.59C22≀C2, (C10×SD16)⋊22C2, C10.64(C4○D8), Q8⋊Dic530C2, (C2×Q8).117D10, (C22×D5).45D4, C22.269(D4×D5), C2.29(D40⋊C2), C10.79(C8⋊C22), (C2×C40).295C22, (C2×C20).449C23, (C2×Dic5).240D4, (D4×C10).98C22, (Q8×C10).78C22, C2.27(C23⋊D10), (C2×D20).125C22, C4⋊Dic5.176C22, C2.30(SD163D5), (C2×D4⋊D5)⋊20C2, C4.44(C2×C5⋊D4), (C2×Q82D5)⋊2C2, (C2×C4×D5).53C22, (C2×C10).361(C2×D4), (C2×C4).538(C22×D5), (C2×C52C8).158C22, SmallGroup(320,799)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D207D4
C1C5C10C20C2×C20C2×C4×D5C202D4 — D207D4
C5C10C2×C20 — D207D4
C1C22C2×C4C2×SD16

Generators and relations for D207D4
 G = < a,b,c,d | a20=b2=c4=d2=1, bab=cac-1=a-1, dad=a11, cbc-1=a3b, dbd=a5b, dcd=c-1 >

Subgroups: 750 in 162 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊D4, C2×D8, C2×SD16, C2×C4○D4, C52C8, C40, C4×D5, D20, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×Q8, C5×Q8, C22×D5, C22×D5, C22×C10, D4⋊D4, C2×C52C8, C4⋊Dic5, D4⋊D5, C23.D5, C2×C40, C5×SD16, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, Q82D5, C2×C5⋊D4, D4×C10, Q8×C10, D101C8, D205C4, Q8⋊Dic5, C2×D4⋊D5, C202D4, C10×SD16, C2×Q82D5, D207D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C22≀C2, C4○D8, C8⋊C22, C5⋊D4, C22×D5, D4⋊D4, D4×D5, C2×C5⋊D4, D40⋊C2, SD163D5, C23⋊D10, D207D4

Smallest permutation representation of D207D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 38)(22 37)(23 36)(24 35)(25 34)(26 33)(27 32)(28 31)(29 30)(39 40)(41 52)(42 51)(43 50)(44 49)(45 48)(46 47)(53 60)(54 59)(55 58)(56 57)(61 64)(62 63)(65 80)(66 79)(67 78)(68 77)(69 76)(70 75)(71 74)(72 73)(81 93)(82 92)(83 91)(84 90)(85 89)(86 88)(94 100)(95 99)(96 98)(101 103)(104 120)(105 119)(106 118)(107 117)(108 116)(109 115)(110 114)(111 113)(121 135)(122 134)(123 133)(124 132)(125 131)(126 130)(127 129)(136 140)(137 139)(141 149)(142 148)(143 147)(144 146)(150 160)(151 159)(152 158)(153 157)(154 156)
(1 126 57 110)(2 125 58 109)(3 124 59 108)(4 123 60 107)(5 122 41 106)(6 121 42 105)(7 140 43 104)(8 139 44 103)(9 138 45 102)(10 137 46 101)(11 136 47 120)(12 135 48 119)(13 134 49 118)(14 133 50 117)(15 132 51 116)(16 131 52 115)(17 130 53 114)(18 129 54 113)(19 128 55 112)(20 127 56 111)(21 84 74 152)(22 83 75 151)(23 82 76 150)(24 81 77 149)(25 100 78 148)(26 99 79 147)(27 98 80 146)(28 97 61 145)(29 96 62 144)(30 95 63 143)(31 94 64 142)(32 93 65 141)(33 92 66 160)(34 91 67 159)(35 90 68 158)(36 89 69 157)(37 88 70 156)(38 87 71 155)(39 86 72 154)(40 85 73 153)
(1 148)(2 159)(3 150)(4 141)(5 152)(6 143)(7 154)(8 145)(9 156)(10 147)(11 158)(12 149)(13 160)(14 151)(15 142)(16 153)(17 144)(18 155)(19 146)(20 157)(21 106)(22 117)(23 108)(24 119)(25 110)(26 101)(27 112)(28 103)(29 114)(30 105)(31 116)(32 107)(33 118)(34 109)(35 120)(36 111)(37 102)(38 113)(39 104)(40 115)(41 84)(42 95)(43 86)(44 97)(45 88)(46 99)(47 90)(48 81)(49 92)(50 83)(51 94)(52 85)(53 96)(54 87)(55 98)(56 89)(57 100)(58 91)(59 82)(60 93)(61 139)(62 130)(63 121)(64 132)(65 123)(66 134)(67 125)(68 136)(69 127)(70 138)(71 129)(72 140)(73 131)(74 122)(75 133)(76 124)(77 135)(78 126)(79 137)(80 128)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,32)(28,31)(29,30)(39,40)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,60)(54,59)(55,58)(56,57)(61,64)(62,63)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73)(81,93)(82,92)(83,91)(84,90)(85,89)(86,88)(94,100)(95,99)(96,98)(101,103)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(121,135)(122,134)(123,133)(124,132)(125,131)(126,130)(127,129)(136,140)(137,139)(141,149)(142,148)(143,147)(144,146)(150,160)(151,159)(152,158)(153,157)(154,156), (1,126,57,110)(2,125,58,109)(3,124,59,108)(4,123,60,107)(5,122,41,106)(6,121,42,105)(7,140,43,104)(8,139,44,103)(9,138,45,102)(10,137,46,101)(11,136,47,120)(12,135,48,119)(13,134,49,118)(14,133,50,117)(15,132,51,116)(16,131,52,115)(17,130,53,114)(18,129,54,113)(19,128,55,112)(20,127,56,111)(21,84,74,152)(22,83,75,151)(23,82,76,150)(24,81,77,149)(25,100,78,148)(26,99,79,147)(27,98,80,146)(28,97,61,145)(29,96,62,144)(30,95,63,143)(31,94,64,142)(32,93,65,141)(33,92,66,160)(34,91,67,159)(35,90,68,158)(36,89,69,157)(37,88,70,156)(38,87,71,155)(39,86,72,154)(40,85,73,153), (1,148)(2,159)(3,150)(4,141)(5,152)(6,143)(7,154)(8,145)(9,156)(10,147)(11,158)(12,149)(13,160)(14,151)(15,142)(16,153)(17,144)(18,155)(19,146)(20,157)(21,106)(22,117)(23,108)(24,119)(25,110)(26,101)(27,112)(28,103)(29,114)(30,105)(31,116)(32,107)(33,118)(34,109)(35,120)(36,111)(37,102)(38,113)(39,104)(40,115)(41,84)(42,95)(43,86)(44,97)(45,88)(46,99)(47,90)(48,81)(49,92)(50,83)(51,94)(52,85)(53,96)(54,87)(55,98)(56,89)(57,100)(58,91)(59,82)(60,93)(61,139)(62,130)(63,121)(64,132)(65,123)(66,134)(67,125)(68,136)(69,127)(70,138)(71,129)(72,140)(73,131)(74,122)(75,133)(76,124)(77,135)(78,126)(79,137)(80,128)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,32)(28,31)(29,30)(39,40)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,60)(54,59)(55,58)(56,57)(61,64)(62,63)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73)(81,93)(82,92)(83,91)(84,90)(85,89)(86,88)(94,100)(95,99)(96,98)(101,103)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(121,135)(122,134)(123,133)(124,132)(125,131)(126,130)(127,129)(136,140)(137,139)(141,149)(142,148)(143,147)(144,146)(150,160)(151,159)(152,158)(153,157)(154,156), (1,126,57,110)(2,125,58,109)(3,124,59,108)(4,123,60,107)(5,122,41,106)(6,121,42,105)(7,140,43,104)(8,139,44,103)(9,138,45,102)(10,137,46,101)(11,136,47,120)(12,135,48,119)(13,134,49,118)(14,133,50,117)(15,132,51,116)(16,131,52,115)(17,130,53,114)(18,129,54,113)(19,128,55,112)(20,127,56,111)(21,84,74,152)(22,83,75,151)(23,82,76,150)(24,81,77,149)(25,100,78,148)(26,99,79,147)(27,98,80,146)(28,97,61,145)(29,96,62,144)(30,95,63,143)(31,94,64,142)(32,93,65,141)(33,92,66,160)(34,91,67,159)(35,90,68,158)(36,89,69,157)(37,88,70,156)(38,87,71,155)(39,86,72,154)(40,85,73,153), (1,148)(2,159)(3,150)(4,141)(5,152)(6,143)(7,154)(8,145)(9,156)(10,147)(11,158)(12,149)(13,160)(14,151)(15,142)(16,153)(17,144)(18,155)(19,146)(20,157)(21,106)(22,117)(23,108)(24,119)(25,110)(26,101)(27,112)(28,103)(29,114)(30,105)(31,116)(32,107)(33,118)(34,109)(35,120)(36,111)(37,102)(38,113)(39,104)(40,115)(41,84)(42,95)(43,86)(44,97)(45,88)(46,99)(47,90)(48,81)(49,92)(50,83)(51,94)(52,85)(53,96)(54,87)(55,98)(56,89)(57,100)(58,91)(59,82)(60,93)(61,139)(62,130)(63,121)(64,132)(65,123)(66,134)(67,125)(68,136)(69,127)(70,138)(71,129)(72,140)(73,131)(74,122)(75,133)(76,124)(77,135)(78,126)(79,137)(80,128) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,38),(22,37),(23,36),(24,35),(25,34),(26,33),(27,32),(28,31),(29,30),(39,40),(41,52),(42,51),(43,50),(44,49),(45,48),(46,47),(53,60),(54,59),(55,58),(56,57),(61,64),(62,63),(65,80),(66,79),(67,78),(68,77),(69,76),(70,75),(71,74),(72,73),(81,93),(82,92),(83,91),(84,90),(85,89),(86,88),(94,100),(95,99),(96,98),(101,103),(104,120),(105,119),(106,118),(107,117),(108,116),(109,115),(110,114),(111,113),(121,135),(122,134),(123,133),(124,132),(125,131),(126,130),(127,129),(136,140),(137,139),(141,149),(142,148),(143,147),(144,146),(150,160),(151,159),(152,158),(153,157),(154,156)], [(1,126,57,110),(2,125,58,109),(3,124,59,108),(4,123,60,107),(5,122,41,106),(6,121,42,105),(7,140,43,104),(8,139,44,103),(9,138,45,102),(10,137,46,101),(11,136,47,120),(12,135,48,119),(13,134,49,118),(14,133,50,117),(15,132,51,116),(16,131,52,115),(17,130,53,114),(18,129,54,113),(19,128,55,112),(20,127,56,111),(21,84,74,152),(22,83,75,151),(23,82,76,150),(24,81,77,149),(25,100,78,148),(26,99,79,147),(27,98,80,146),(28,97,61,145),(29,96,62,144),(30,95,63,143),(31,94,64,142),(32,93,65,141),(33,92,66,160),(34,91,67,159),(35,90,68,158),(36,89,69,157),(37,88,70,156),(38,87,71,155),(39,86,72,154),(40,85,73,153)], [(1,148),(2,159),(3,150),(4,141),(5,152),(6,143),(7,154),(8,145),(9,156),(10,147),(11,158),(12,149),(13,160),(14,151),(15,142),(16,153),(17,144),(18,155),(19,146),(20,157),(21,106),(22,117),(23,108),(24,119),(25,110),(26,101),(27,112),(28,103),(29,114),(30,105),(31,116),(32,107),(33,118),(34,109),(35,120),(36,111),(37,102),(38,113),(39,104),(40,115),(41,84),(42,95),(43,86),(44,97),(45,88),(46,99),(47,90),(48,81),(49,92),(50,83),(51,94),(52,85),(53,96),(54,87),(55,98),(56,89),(57,100),(58,91),(59,82),(60,93),(61,139),(62,130),(63,121),(64,132),(65,123),(66,134),(67,125),(68,136),(69,127),(70,138),(71,129),(72,140),(73,131),(74,122),(75,133),(76,124),(77,135),(78,126),(79,137),(80,128)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G5A5B8A8B8C8D10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222222444444455888810···1010101010202020202020202040···40
size111182020202244101040224420202···28888444488884···4

47 irreducible representations

dim11111111222222222244444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4D4D5D10D10D10C4○D8C5⋊D4C8⋊C22D4×D5D4×D5D40⋊C2SD163D5
kernelD207D4D101C8D205C4Q8⋊Dic5C2×D4⋊D5C202D4C10×SD16C2×Q82D5D20C2×Dic5C5×Q8C22×D5C2×SD16C2×C8C2×D4C2×Q8C10Q8C10C4C22C2C2
# reps11111111212122224812244

Matrix representation of D207D4 in GL4(𝔽41) generated by

1200
404000
003440
0081
,
1200
04000
0011
00040
,
303000
261100
003820
00203
,
01700
29000
001735
00724
G:=sub<GL(4,GF(41))| [1,40,0,0,2,40,0,0,0,0,34,8,0,0,40,1],[1,0,0,0,2,40,0,0,0,0,1,0,0,0,1,40],[30,26,0,0,30,11,0,0,0,0,38,20,0,0,20,3],[0,29,0,0,17,0,0,0,0,0,17,7,0,0,35,24] >;

D207D4 in GAP, Magma, Sage, TeX

D_{20}\rtimes_7D_4
% in TeX

G:=Group("D20:7D4");
// GroupNames label

G:=SmallGroup(320,799);
// by ID

G=gap.SmallGroup(320,799);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,758,135,184,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=c*a*c^-1=a^-1,d*a*d=a^11,c*b*c^-1=a^3*b,d*b*d=a^5*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽