metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C5×D4).8D4, (C2×SD16)⋊8D5, (D4×Dic5)⋊7C2, C20.172(C2×D4), (C2×C8).145D10, D4.3(C5⋊D4), C5⋊7(D4.2D4), (C2×Q8).51D10, D20⋊5C4⋊34C2, (C10×SD16)⋊19C2, (C2×D4).145D10, C20.99(C4○D4), C10.60(C4○D8), Q8⋊Dic5⋊27C2, C20.23D4⋊3C2, C20.8Q8⋊34C2, (C2×Dic5).76D4, C22.262(D4×D5), C4.11(D4⋊2D5), C2.27(D40⋊C2), C10.77(C8⋊C22), (C2×C40).292C22, (C2×C20).442C23, (D4×C10).91C22, (Q8×C10).72C22, C10.114(C4⋊D4), (C2×D20).122C22, C4⋊Dic5.172C22, (C4×Dic5).55C22, C2.26(Dic5⋊D4), C2.26(SD16⋊3D5), (C2×D4⋊D5).8C2, C4.40(C2×C5⋊D4), (C2×C10).354(C2×D4), (C2×C4).531(C22×D5), (C2×C5⋊2C8).154C22, SmallGroup(320,792)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C5×D4).D4
G = < a,b,c,d,e | a5=b4=c2=d4=e2=1, ab=ba, ac=ca, dad-1=eae=a-1, cbc=ebe=b-1, bd=db, cd=dc, ece=b-1c, ede=b2d-1 >
Subgroups: 534 in 124 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, Dic5, C20, C20, D10, C2×C10, C2×C10, D4⋊C4, Q8⋊C4, C4⋊C8, C4×D4, C4.4D4, C2×D8, C2×SD16, C5⋊2C8, C40, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C22×D5, C22×C10, D4.2D4, C2×C5⋊2C8, C4×Dic5, C4⋊Dic5, D10⋊C4, D4⋊D5, C23.D5, C2×C40, C5×SD16, C2×D20, C22×Dic5, D4×C10, Q8×C10, C20.8Q8, D20⋊5C4, Q8⋊Dic5, C2×D4⋊D5, D4×Dic5, C20.23D4, C10×SD16, (C5×D4).D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4⋊D4, C4○D8, C8⋊C22, C5⋊D4, C22×D5, D4.2D4, D4×D5, D4⋊2D5, C2×C5⋊D4, D40⋊C2, SD16⋊3D5, Dic5⋊D4, (C5×D4).D4
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 26 6 21)(2 27 7 22)(3 28 8 23)(4 29 9 24)(5 30 10 25)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)(41 61 46 66)(42 62 47 67)(43 63 48 68)(44 64 49 69)(45 65 50 70)(51 71 56 76)(52 72 57 77)(53 73 58 78)(54 74 59 79)(55 75 60 80)(81 101 86 106)(82 102 87 107)(83 103 88 108)(84 104 89 109)(85 105 90 110)(91 111 96 116)(92 112 97 117)(93 113 98 118)(94 114 99 119)(95 115 100 120)(121 146 126 141)(122 147 127 142)(123 148 128 143)(124 149 129 144)(125 150 130 145)(131 156 136 151)(132 157 137 152)(133 158 138 153)(134 159 139 154)(135 160 140 155)
(1 106)(2 107)(3 108)(4 109)(5 110)(6 101)(7 102)(8 103)(9 104)(10 105)(11 116)(12 117)(13 118)(14 119)(15 120)(16 111)(17 112)(18 113)(19 114)(20 115)(21 81)(22 82)(23 83)(24 84)(25 85)(26 86)(27 87)(28 88)(29 89)(30 90)(31 91)(32 92)(33 93)(34 94)(35 95)(36 96)(37 97)(38 98)(39 99)(40 100)(41 141)(42 142)(43 143)(44 144)(45 145)(46 146)(47 147)(48 148)(49 149)(50 150)(51 151)(52 152)(53 153)(54 154)(55 155)(56 156)(57 157)(58 158)(59 159)(60 160)(61 126)(62 127)(63 128)(64 129)(65 130)(66 121)(67 122)(68 123)(69 124)(70 125)(71 136)(72 137)(73 138)(74 139)(75 140)(76 131)(77 132)(78 133)(79 134)(80 135)
(1 41 11 51)(2 45 12 55)(3 44 13 54)(4 43 14 53)(5 42 15 52)(6 46 16 56)(7 50 17 60)(8 49 18 59)(9 48 19 58)(10 47 20 57)(21 66 31 76)(22 70 32 80)(23 69 33 79)(24 68 34 78)(25 67 35 77)(26 61 36 71)(27 65 37 75)(28 64 38 74)(29 63 39 73)(30 62 40 72)(81 121 91 131)(82 125 92 135)(83 124 93 134)(84 123 94 133)(85 122 95 132)(86 126 96 136)(87 130 97 140)(88 129 98 139)(89 128 99 138)(90 127 100 137)(101 146 111 156)(102 150 112 160)(103 149 113 159)(104 148 114 158)(105 147 115 157)(106 141 116 151)(107 145 117 155)(108 144 118 154)(109 143 119 153)(110 142 120 152)
(2 5)(3 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(21 26)(22 30)(23 29)(24 28)(25 27)(31 36)(32 40)(33 39)(34 38)(35 37)(41 56)(42 60)(43 59)(44 58)(45 57)(46 51)(47 55)(48 54)(49 53)(50 52)(61 71)(62 75)(63 74)(64 73)(65 72)(66 76)(67 80)(68 79)(69 78)(70 77)(81 106)(82 110)(83 109)(84 108)(85 107)(86 101)(87 105)(88 104)(89 103)(90 102)(91 116)(92 120)(93 119)(94 118)(95 117)(96 111)(97 115)(98 114)(99 113)(100 112)(121 156)(122 160)(123 159)(124 158)(125 157)(126 151)(127 155)(128 154)(129 153)(130 152)(131 146)(132 150)(133 149)(134 148)(135 147)(136 141)(137 145)(138 144)(139 143)(140 142)
G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,61,46,66)(42,62,47,67)(43,63,48,68)(44,64,49,69)(45,65,50,70)(51,71,56,76)(52,72,57,77)(53,73,58,78)(54,74,59,79)(55,75,60,80)(81,101,86,106)(82,102,87,107)(83,103,88,108)(84,104,89,109)(85,105,90,110)(91,111,96,116)(92,112,97,117)(93,113,98,118)(94,114,99,119)(95,115,100,120)(121,146,126,141)(122,147,127,142)(123,148,128,143)(124,149,129,144)(125,150,130,145)(131,156,136,151)(132,157,137,152)(133,158,138,153)(134,159,139,154)(135,160,140,155), (1,106)(2,107)(3,108)(4,109)(5,110)(6,101)(7,102)(8,103)(9,104)(10,105)(11,116)(12,117)(13,118)(14,119)(15,120)(16,111)(17,112)(18,113)(19,114)(20,115)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,153)(54,154)(55,155)(56,156)(57,157)(58,158)(59,159)(60,160)(61,126)(62,127)(63,128)(64,129)(65,130)(66,121)(67,122)(68,123)(69,124)(70,125)(71,136)(72,137)(73,138)(74,139)(75,140)(76,131)(77,132)(78,133)(79,134)(80,135), (1,41,11,51)(2,45,12,55)(3,44,13,54)(4,43,14,53)(5,42,15,52)(6,46,16,56)(7,50,17,60)(8,49,18,59)(9,48,19,58)(10,47,20,57)(21,66,31,76)(22,70,32,80)(23,69,33,79)(24,68,34,78)(25,67,35,77)(26,61,36,71)(27,65,37,75)(28,64,38,74)(29,63,39,73)(30,62,40,72)(81,121,91,131)(82,125,92,135)(83,124,93,134)(84,123,94,133)(85,122,95,132)(86,126,96,136)(87,130,97,140)(88,129,98,139)(89,128,99,138)(90,127,100,137)(101,146,111,156)(102,150,112,160)(103,149,113,159)(104,148,114,158)(105,147,115,157)(106,141,116,151)(107,145,117,155)(108,144,118,154)(109,143,119,153)(110,142,120,152), (2,5)(3,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(21,26)(22,30)(23,29)(24,28)(25,27)(31,36)(32,40)(33,39)(34,38)(35,37)(41,56)(42,60)(43,59)(44,58)(45,57)(46,51)(47,55)(48,54)(49,53)(50,52)(61,71)(62,75)(63,74)(64,73)(65,72)(66,76)(67,80)(68,79)(69,78)(70,77)(81,106)(82,110)(83,109)(84,108)(85,107)(86,101)(87,105)(88,104)(89,103)(90,102)(91,116)(92,120)(93,119)(94,118)(95,117)(96,111)(97,115)(98,114)(99,113)(100,112)(121,156)(122,160)(123,159)(124,158)(125,157)(126,151)(127,155)(128,154)(129,153)(130,152)(131,146)(132,150)(133,149)(134,148)(135,147)(136,141)(137,145)(138,144)(139,143)(140,142)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,61,46,66)(42,62,47,67)(43,63,48,68)(44,64,49,69)(45,65,50,70)(51,71,56,76)(52,72,57,77)(53,73,58,78)(54,74,59,79)(55,75,60,80)(81,101,86,106)(82,102,87,107)(83,103,88,108)(84,104,89,109)(85,105,90,110)(91,111,96,116)(92,112,97,117)(93,113,98,118)(94,114,99,119)(95,115,100,120)(121,146,126,141)(122,147,127,142)(123,148,128,143)(124,149,129,144)(125,150,130,145)(131,156,136,151)(132,157,137,152)(133,158,138,153)(134,159,139,154)(135,160,140,155), (1,106)(2,107)(3,108)(4,109)(5,110)(6,101)(7,102)(8,103)(9,104)(10,105)(11,116)(12,117)(13,118)(14,119)(15,120)(16,111)(17,112)(18,113)(19,114)(20,115)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,153)(54,154)(55,155)(56,156)(57,157)(58,158)(59,159)(60,160)(61,126)(62,127)(63,128)(64,129)(65,130)(66,121)(67,122)(68,123)(69,124)(70,125)(71,136)(72,137)(73,138)(74,139)(75,140)(76,131)(77,132)(78,133)(79,134)(80,135), (1,41,11,51)(2,45,12,55)(3,44,13,54)(4,43,14,53)(5,42,15,52)(6,46,16,56)(7,50,17,60)(8,49,18,59)(9,48,19,58)(10,47,20,57)(21,66,31,76)(22,70,32,80)(23,69,33,79)(24,68,34,78)(25,67,35,77)(26,61,36,71)(27,65,37,75)(28,64,38,74)(29,63,39,73)(30,62,40,72)(81,121,91,131)(82,125,92,135)(83,124,93,134)(84,123,94,133)(85,122,95,132)(86,126,96,136)(87,130,97,140)(88,129,98,139)(89,128,99,138)(90,127,100,137)(101,146,111,156)(102,150,112,160)(103,149,113,159)(104,148,114,158)(105,147,115,157)(106,141,116,151)(107,145,117,155)(108,144,118,154)(109,143,119,153)(110,142,120,152), (2,5)(3,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(21,26)(22,30)(23,29)(24,28)(25,27)(31,36)(32,40)(33,39)(34,38)(35,37)(41,56)(42,60)(43,59)(44,58)(45,57)(46,51)(47,55)(48,54)(49,53)(50,52)(61,71)(62,75)(63,74)(64,73)(65,72)(66,76)(67,80)(68,79)(69,78)(70,77)(81,106)(82,110)(83,109)(84,108)(85,107)(86,101)(87,105)(88,104)(89,103)(90,102)(91,116)(92,120)(93,119)(94,118)(95,117)(96,111)(97,115)(98,114)(99,113)(100,112)(121,156)(122,160)(123,159)(124,158)(125,157)(126,151)(127,155)(128,154)(129,153)(130,152)(131,146)(132,150)(133,149)(134,148)(135,147)(136,141)(137,145)(138,144)(139,143)(140,142) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,26,6,21),(2,27,7,22),(3,28,8,23),(4,29,9,24),(5,30,10,25),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35),(41,61,46,66),(42,62,47,67),(43,63,48,68),(44,64,49,69),(45,65,50,70),(51,71,56,76),(52,72,57,77),(53,73,58,78),(54,74,59,79),(55,75,60,80),(81,101,86,106),(82,102,87,107),(83,103,88,108),(84,104,89,109),(85,105,90,110),(91,111,96,116),(92,112,97,117),(93,113,98,118),(94,114,99,119),(95,115,100,120),(121,146,126,141),(122,147,127,142),(123,148,128,143),(124,149,129,144),(125,150,130,145),(131,156,136,151),(132,157,137,152),(133,158,138,153),(134,159,139,154),(135,160,140,155)], [(1,106),(2,107),(3,108),(4,109),(5,110),(6,101),(7,102),(8,103),(9,104),(10,105),(11,116),(12,117),(13,118),(14,119),(15,120),(16,111),(17,112),(18,113),(19,114),(20,115),(21,81),(22,82),(23,83),(24,84),(25,85),(26,86),(27,87),(28,88),(29,89),(30,90),(31,91),(32,92),(33,93),(34,94),(35,95),(36,96),(37,97),(38,98),(39,99),(40,100),(41,141),(42,142),(43,143),(44,144),(45,145),(46,146),(47,147),(48,148),(49,149),(50,150),(51,151),(52,152),(53,153),(54,154),(55,155),(56,156),(57,157),(58,158),(59,159),(60,160),(61,126),(62,127),(63,128),(64,129),(65,130),(66,121),(67,122),(68,123),(69,124),(70,125),(71,136),(72,137),(73,138),(74,139),(75,140),(76,131),(77,132),(78,133),(79,134),(80,135)], [(1,41,11,51),(2,45,12,55),(3,44,13,54),(4,43,14,53),(5,42,15,52),(6,46,16,56),(7,50,17,60),(8,49,18,59),(9,48,19,58),(10,47,20,57),(21,66,31,76),(22,70,32,80),(23,69,33,79),(24,68,34,78),(25,67,35,77),(26,61,36,71),(27,65,37,75),(28,64,38,74),(29,63,39,73),(30,62,40,72),(81,121,91,131),(82,125,92,135),(83,124,93,134),(84,123,94,133),(85,122,95,132),(86,126,96,136),(87,130,97,140),(88,129,98,139),(89,128,99,138),(90,127,100,137),(101,146,111,156),(102,150,112,160),(103,149,113,159),(104,148,114,158),(105,147,115,157),(106,141,116,151),(107,145,117,155),(108,144,118,154),(109,143,119,153),(110,142,120,152)], [(2,5),(3,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(21,26),(22,30),(23,29),(24,28),(25,27),(31,36),(32,40),(33,39),(34,38),(35,37),(41,56),(42,60),(43,59),(44,58),(45,57),(46,51),(47,55),(48,54),(49,53),(50,52),(61,71),(62,75),(63,74),(64,73),(65,72),(66,76),(67,80),(68,79),(69,78),(70,77),(81,106),(82,110),(83,109),(84,108),(85,107),(86,101),(87,105),(88,104),(89,103),(90,102),(91,116),(92,120),(93,119),(94,118),(95,117),(96,111),(97,115),(98,114),(99,113),(100,112),(121,156),(122,160),(123,159),(124,158),(125,157),(126,151),(127,155),(128,154),(129,153),(130,152),(131,146),(132,150),(133,149),(134,148),(135,147),(136,141),(137,145),(138,144),(139,143),(140,142)]])
47 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 40 | 2 | 2 | 8 | 10 | 10 | 20 | 20 | 20 | 2 | 2 | 4 | 4 | 20 | 20 | 2 | ··· | 2 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
47 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | C4○D4 | D10 | D10 | D10 | C4○D8 | C5⋊D4 | C8⋊C22 | D4⋊2D5 | D4×D5 | D40⋊C2 | SD16⋊3D5 |
kernel | (C5×D4).D4 | C20.8Q8 | D20⋊5C4 | Q8⋊Dic5 | C2×D4⋊D5 | D4×Dic5 | C20.23D4 | C10×SD16 | C2×Dic5 | C5×D4 | C2×SD16 | C20 | C2×C8 | C2×D4 | C2×Q8 | C10 | D4 | C10 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 8 | 1 | 2 | 2 | 4 | 4 |
Matrix representation of (C5×D4).D4 ►in GL6(𝔽41)
0 | 40 | 0 | 0 | 0 | 0 |
1 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 5 |
0 | 0 | 0 | 0 | 16 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 24 | 19 |
0 | 0 | 0 | 0 | 28 | 17 |
6 | 35 | 0 | 0 | 0 | 0 |
40 | 35 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
6 | 35 | 0 | 0 | 0 | 0 |
40 | 35 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 16 | 40 |
G:=sub<GL(6,GF(41))| [0,1,0,0,0,0,40,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,16,0,0,0,0,5,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,24,28,0,0,0,0,19,17],[6,40,0,0,0,0,35,35,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[6,40,0,0,0,0,35,35,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,16,0,0,0,0,0,40] >;
(C5×D4).D4 in GAP, Magma, Sage, TeX
(C_5\times D_4).D_4
% in TeX
G:=Group("(C5xD4).D4");
// GroupNames label
G:=SmallGroup(320,792);
// by ID
G=gap.SmallGroup(320,792);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,1094,135,184,570,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^4=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e=a^-1,c*b*c=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b^-1*c,e*d*e=b^2*d^-1>;
// generators/relations